Fault Diagnosis Based on an Approach Combining a Spectrogram and a Convolutional Neural Network with Application to a Wind Turbine System

To investigate problems involving wind turbines that easily occur but are hard to diagnose, this paper presents a wind turbine (WT) fault diagnosis algorithm based on a spectrogram and a convolutional neural network. First, the original data are sampled into a phonetic form. Then, the data are trans...

Full description

Bibliographic Details
Main Authors: Wenxin Yu, Shoudao Huang, Weihong Xiao
Format: Article
Language:English
Published: MDPI AG 2018-09-01
Series:Energies
Subjects:
Online Access:http://www.mdpi.com/1996-1073/11/10/2561
Description
Summary:To investigate problems involving wind turbines that easily occur but are hard to diagnose, this paper presents a wind turbine (WT) fault diagnosis algorithm based on a spectrogram and a convolutional neural network. First, the original data are sampled into a phonetic form. Then, the data are transformed into a spectrogram in the time-frequency domain. Finally, the data are sent into a convolutional neural network (CNN) model with batch regularization for training and testing. Experimental results show that the method is suitable for training a large number of samples and has good scalability. Compared with Back Propagation Neural Network (BPNN), Support Vector Machine (SVM), Extreme Learning Machine (ELM), and other fault diagnosis methods, the average diagnostic correctness rate is higher; so, the method can provide more accurate reference information for wind turbine fault diagnosis.
ISSN:1996-1073