Classification of C3 and C4 Vegetation Types Using MODIS and ETM+ Blended High Spatio-Temporal Resolution Data

The distribution of C3 and C4 vegetation plays an important role in the global carbon cycle and climate change. Knowledge of the distribution of C3 and C4 vegetation at a high spatial resolution over local or regional scales helps us to understand their ecological functions and climate dependencies....

Full description

Bibliographic Details
Main Authors: Xiaolong Liu, Yanchen Bo, Jian Zhang, Yaqian He
Format: Article
Language:English
Published: MDPI AG 2015-11-01
Series:Remote Sensing
Subjects:
Online Access:http://www.mdpi.com/2072-4292/7/11/15244
Description
Summary:The distribution of C3 and C4 vegetation plays an important role in the global carbon cycle and climate change. Knowledge of the distribution of C3 and C4 vegetation at a high spatial resolution over local or regional scales helps us to understand their ecological functions and climate dependencies. In this study, we classified C3 and C4 vegetation at a high resolution for spatially heterogeneous landscapes. First, we generated a high spatial and temporal land surface reflectance dataset by blending MODIS (Moderate Resolution Imaging Spectroradiometer) and ETM+ (Enhanced Thematic Mapper Plus) data. The blended data exhibited a high correlation (R2 = 0.88) with the satellite derived ETM+ data. The time-series NDVI (Normalized Difference Vegetation Index) data were then generated using the blended high spatio-temporal resolution data to capture the phenological differences between the C3 and C4 vegetation. The time-series NDVI revealed that the C3 vegetation turns green earlier in spring than the C4 vegetation, and senesces later in autumn than the C4 vegetation. C4 vegetation has a higher NDVI value than the C3 vegetation during summer time. Based on the distinguished characteristics, the time-series NDVI was used to extract the C3 and C4 classification features. Five features were selected from the 18 classification features according to the ground investigation data, and subsequently used for the C3 and C4 classification. The overall accuracy of the C3 and C4 vegetation classification was 85.75% with a kappa of 0.725 in our study area.
ISSN:2072-4292