Numerical Study of CH<sub>4</sub> Generation and Transport in XLPE-Insulated Cables in Continuous Vulcanization

In this work, we apply a computational diffusion model based on Fick’s laws to study the generation and transport of methane (CH<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>4</mn> </msub> </semantics&...

Full description

Bibliographic Details
Main Authors: Mohd Fuad Anwari Che Ruslan, Dong Joon Youn, Roshan Aarons, Yabin Sun, Shuyu Sun
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/13/13/2978
id doaj-e0fbd59e952743cb97c20b3e663e106c
record_format Article
spelling doaj-e0fbd59e952743cb97c20b3e663e106c2020-11-25T03:04:03ZengMDPI AGMaterials1996-19442020-07-01132978297810.3390/ma13132978Numerical Study of CH<sub>4</sub> Generation and Transport in XLPE-Insulated Cables in Continuous VulcanizationMohd Fuad Anwari Che Ruslan0Dong Joon Youn1Roshan Aarons2Yabin Sun3Shuyu Sun4Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology, Thuwal 23955, Saudi ArabiaComputational Transport Phenomena Laboratory, King Abdullah University of Science and Technology, Thuwal 23955, Saudi ArabiaDow Chemical Europe, 8810 Horgen, SwitzerlandDow Chemical (China) Investment Co., Ltd., Shanghai 200203, ChinaComputational Transport Phenomena Laboratory, King Abdullah University of Science and Technology, Thuwal 23955, Saudi ArabiaIn this work, we apply a computational diffusion model based on Fick’s laws to study the generation and transport of methane (CH<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>4</mn> </msub> </semantics> </math> </inline-formula>) during the production of a cross-linked polyethylene (XLPE) insulated cable. The model takes into account the heating process in a curing tube where most of the cross-linking reaction occurs and the subsequent two-stage cooling process, with water and air as the cooling media. For the calculation of CH<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>4</mn> </msub> </semantics> </math> </inline-formula> generation, the model considers the effect of temperature on the cross-linking reaction selectivity. The cross-linking reaction selectivity is a measure of the preference of cumyloxy to proceed either with a hydrogen abstraction reaction, which produces cumyl alcohol, or with a <inline-formula> <math display="inline"> <semantics> <mi>β</mi> </semantics> </math> </inline-formula>-scission reaction, which produces acetophenone and CH<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>4</mn> </msub> </semantics> </math> </inline-formula>. The simulation results show that, during cable production, a significant amount of CH<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>4</mn> </msub> </semantics> </math> </inline-formula> is generated in the XLPE layer, which diffuses out of the cable and into the conductor part of the cable. Therefore, the diffusion pattern becomes a non-uniform radial distribution of CH<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>4</mn> </msub> </semantics> </math> </inline-formula> at the cable take-up point, which corresponds well with existing experimental data. Using the model, we perform a series of parametric studies to determine the effect of the cable production conditions, such as the curing temperature, line speed, and cooling water flow rate, on CH<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>4</mn> </msub> </semantics> </math> </inline-formula> generation and transport during cable production. The results show that the curing temperature has the largest impact on the amount of CH<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>4</mn> </msub> </semantics> </math> </inline-formula> generated and its distribution within the cable. We found that under similar curing and cooling conditions, varying the line speed induces a notable effect on the CH<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>4</mn> </msub> </semantics> </math> </inline-formula> transport within the cable, while the cooling water flow rate had no significant impact.https://www.mdpi.com/1996-1944/13/13/2978cable insulationXLPEcontinuous vulcanization linecross-linking reactionbyproduct degassingreaction selectivity
collection DOAJ
language English
format Article
sources DOAJ
author Mohd Fuad Anwari Che Ruslan
Dong Joon Youn
Roshan Aarons
Yabin Sun
Shuyu Sun
spellingShingle Mohd Fuad Anwari Che Ruslan
Dong Joon Youn
Roshan Aarons
Yabin Sun
Shuyu Sun
Numerical Study of CH<sub>4</sub> Generation and Transport in XLPE-Insulated Cables in Continuous Vulcanization
Materials
cable insulation
XLPE
continuous vulcanization line
cross-linking reaction
byproduct degassing
reaction selectivity
author_facet Mohd Fuad Anwari Che Ruslan
Dong Joon Youn
Roshan Aarons
Yabin Sun
Shuyu Sun
author_sort Mohd Fuad Anwari Che Ruslan
title Numerical Study of CH<sub>4</sub> Generation and Transport in XLPE-Insulated Cables in Continuous Vulcanization
title_short Numerical Study of CH<sub>4</sub> Generation and Transport in XLPE-Insulated Cables in Continuous Vulcanization
title_full Numerical Study of CH<sub>4</sub> Generation and Transport in XLPE-Insulated Cables in Continuous Vulcanization
title_fullStr Numerical Study of CH<sub>4</sub> Generation and Transport in XLPE-Insulated Cables in Continuous Vulcanization
title_full_unstemmed Numerical Study of CH<sub>4</sub> Generation and Transport in XLPE-Insulated Cables in Continuous Vulcanization
title_sort numerical study of ch<sub>4</sub> generation and transport in xlpe-insulated cables in continuous vulcanization
publisher MDPI AG
series Materials
issn 1996-1944
publishDate 2020-07-01
description In this work, we apply a computational diffusion model based on Fick’s laws to study the generation and transport of methane (CH<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>4</mn> </msub> </semantics> </math> </inline-formula>) during the production of a cross-linked polyethylene (XLPE) insulated cable. The model takes into account the heating process in a curing tube where most of the cross-linking reaction occurs and the subsequent two-stage cooling process, with water and air as the cooling media. For the calculation of CH<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>4</mn> </msub> </semantics> </math> </inline-formula> generation, the model considers the effect of temperature on the cross-linking reaction selectivity. The cross-linking reaction selectivity is a measure of the preference of cumyloxy to proceed either with a hydrogen abstraction reaction, which produces cumyl alcohol, or with a <inline-formula> <math display="inline"> <semantics> <mi>β</mi> </semantics> </math> </inline-formula>-scission reaction, which produces acetophenone and CH<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>4</mn> </msub> </semantics> </math> </inline-formula>. The simulation results show that, during cable production, a significant amount of CH<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>4</mn> </msub> </semantics> </math> </inline-formula> is generated in the XLPE layer, which diffuses out of the cable and into the conductor part of the cable. Therefore, the diffusion pattern becomes a non-uniform radial distribution of CH<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>4</mn> </msub> </semantics> </math> </inline-formula> at the cable take-up point, which corresponds well with existing experimental data. Using the model, we perform a series of parametric studies to determine the effect of the cable production conditions, such as the curing temperature, line speed, and cooling water flow rate, on CH<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>4</mn> </msub> </semantics> </math> </inline-formula> generation and transport during cable production. The results show that the curing temperature has the largest impact on the amount of CH<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>4</mn> </msub> </semantics> </math> </inline-formula> generated and its distribution within the cable. We found that under similar curing and cooling conditions, varying the line speed induces a notable effect on the CH<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>4</mn> </msub> </semantics> </math> </inline-formula> transport within the cable, while the cooling water flow rate had no significant impact.
topic cable insulation
XLPE
continuous vulcanization line
cross-linking reaction
byproduct degassing
reaction selectivity
url https://www.mdpi.com/1996-1944/13/13/2978
work_keys_str_mv AT mohdfuadanwaricheruslan numericalstudyofchsub4subgenerationandtransportinxlpeinsulatedcablesincontinuousvulcanization
AT dongjoonyoun numericalstudyofchsub4subgenerationandtransportinxlpeinsulatedcablesincontinuousvulcanization
AT roshanaarons numericalstudyofchsub4subgenerationandtransportinxlpeinsulatedcablesincontinuousvulcanization
AT yabinsun numericalstudyofchsub4subgenerationandtransportinxlpeinsulatedcablesincontinuousvulcanization
AT shuyusun numericalstudyofchsub4subgenerationandtransportinxlpeinsulatedcablesincontinuousvulcanization
_version_ 1724683054171029504