Perspective: Optical measurement of feature dimensions and shapes by scatterometry

The use of optical scattering to measure feature shape and dimensions, scatterometry, is now routine during semiconductor manufacturing. Scatterometry iteratively improves an optical model structure using simulations that are compared to experimental data from an ellipsometer. These simulations are...

Full description

Bibliographic Details
Main Authors: Alain C. Diebold, Andy Antonelli, Nick Keller
Format: Article
Language:English
Published: AIP Publishing LLC 2018-05-01
Series:APL Materials
Online Access:http://dx.doi.org/10.1063/1.5018310
Description
Summary:The use of optical scattering to measure feature shape and dimensions, scatterometry, is now routine during semiconductor manufacturing. Scatterometry iteratively improves an optical model structure using simulations that are compared to experimental data from an ellipsometer. These simulations are done using the rigorous coupled wave analysis for solving Maxwell’s equations. In this article, we describe the Mueller matrix spectroscopic ellipsometry based scatterometry. Next, the rigorous coupled wave analysis for Maxwell’s equations is presented. Following this, several example measurements are described as they apply to specific process steps in the fabrication of gate-all-around (GAA) transistor structures. First, simulations of measurement sensitivity for the inner spacer etch back step of horizontal GAA transistor processing are described. Next, the simulated metrology sensitivity for sacrificial (dummy) amorphous silicon etch back step of vertical GAA transistor processing is discussed. Finally, we present the application of plasmonically active test structures for improving the sensitivity of the measurement of metal linewidths.
ISSN:2166-532X