Effects of Surface Morphology of ZnAl2O4 Ceramic Materials on Osteoblastic Cells Responses

Ceramic scaffolds are widely studied in the tissue engineering field due to their potential in medical applications as bone substitutes or as bone-filling materials. The purpose of this study was to investigate the effect of surface morphology of nanostructure thin films of ZnAl2O4 prepared by spray...

Full description

Bibliographic Details
Main Authors: José Luis Suárez-Franco, Manuel García-Hipólito, Miguel Ángel Surárez-Rosales, José Arturo Fernández-Pedrero, Octavio Álvarez-Fregoso, Julio Alberto Juárez-Islas, Marco Antonio Álvarez-Pérez
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:Journal of Nanomaterials
Online Access:http://dx.doi.org/10.1155/2013/361249
Description
Summary:Ceramic scaffolds are widely studied in the tissue engineering field due to their potential in medical applications as bone substitutes or as bone-filling materials. The purpose of this study was to investigate the effect of surface morphology of nanostructure thin films of ZnAl2O4 prepared by spray pyrolysis and bulk pellets of polycrystalline ZnAl2O4 prepared by chemical coprecipitation reaction on the in vitro cell adhesion, viability, and cell-material interactions of osteoblastic cells. Our result showed that cell attachment was significantly enhanced from 60 to 80% on the ZnAl2O4 nanostructured material surface when compared with bulk ceramic surfaces. Moreover, our results showed that the balance of morphological properties of the thin film nanostructure ceramic improves cell-material interaction with enhanced spreading and filopodia with multiple cellular extensions on the surface of the ceramic and enhancing cell viability/proliferation in comparison with bulk ceramic surfaces used as control. Altogether, these results suggest that zinc aluminate nanostructured materials have a great potential to be used in dental implant and bone substitute applications.
ISSN:1687-4110
1687-4129