The gut hormone receptor GIPR links energy availability to the control of hematopoiesis

Objective: Glucose-dependent insulinotropic polypeptide (GIP) conveys information from ingested nutrients to peripheral tissues, signaling energy availability. The GIP Receptor (GIPR) is also expressed in the bone marrow, notably in cells of the myeloid lineage. However, the importance of gain and l...

Full description

Bibliographic Details
Main Authors: Gemma Pujadas, Elodie M. Varin, Laurie L. Baggio, Erin E. Mulvihill, K.W.Annie Bang, Jacqueline A. Koehler, Dianne Matthews, Daniel J. Drucker
Format: Article
Language:English
Published: Elsevier 2020-09-01
Series:Molecular Metabolism
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S221287782030082X
id doaj-e19fde8ee5ec4243954f64ec98a8f79f
record_format Article
spelling doaj-e19fde8ee5ec4243954f64ec98a8f79f2020-11-25T03:53:59ZengElsevierMolecular Metabolism2212-87782020-09-0139101008The gut hormone receptor GIPR links energy availability to the control of hematopoiesisGemma Pujadas0Elodie M. Varin1Laurie L. Baggio2Erin E. Mulvihill3K.W.Annie Bang4Jacqueline A. Koehler5Dianne Matthews6Daniel J. Drucker7Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, ON, M5G 1X5, CanadaLunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, ON, M5G 1X5, CanadaLunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, ON, M5G 1X5, CanadaLunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, ON, M5G 1X5, CanadaLunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, ON, M5G 1X5, CanadaLunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, ON, M5G 1X5, CanadaLunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, ON, M5G 1X5, CanadaCorresponding author. Mt. Sinai Hospital, 600 University Ave Mailbox 39, TCP5-1004, Toronto, ON, M5G 1X5. Canada.; Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, ON, M5G 1X5, CanadaObjective: Glucose-dependent insulinotropic polypeptide (GIP) conveys information from ingested nutrients to peripheral tissues, signaling energy availability. The GIP Receptor (GIPR) is also expressed in the bone marrow, notably in cells of the myeloid lineage. However, the importance of gain and loss of GIPR signaling for diverse hematopoietic responses remains unclear. Methods: We assessed the expression of the Gipr in bone marrow (BM) lineages and examined functional roles for the GIPR in control of hematopoiesis. Bone marrow responses were studied in (i) mice fed regular or energy-rich diets, (ii) mice treated with hematopoietic stressors including acute 5-fluorouracil (5-FU), pamsaccharide (LPS), and Pam3CysSerLys4 (Pam3CSK4), with or without pharmacological administration of a GIPR agonist, and (iii) mice with global (Gipr−/−) or selective deletion of the GIPR (GiprTie2−/−) with and without bone marrow transplantation (BMT). Results: Gipr is expressed within T cells, myeloid cells, and myeloid precursors; however, these cell populations were not different in peripheral blood, spleen, or BM of Gipr−/− and GiprTie2−/− mice. Nevertheless, gain and loss of function studies revealed that GIPR signaling controls the expression of BM Toll-like receptor (TLR) and Notch-related genes regulating hematopoiesis. Loss of the BM GIPR attenuates the extent of adipose tissue inflammation and dysregulates the hematopoietic response to BMT. GIPR agonism modified BM gene expression profiles following 5-FU and Pam3CSK4 whereas loss of the Gipr altered the hematopoietic responses to energy excess, two TLR ligands, and 5-FU. However, the magnitude of the cellular changes in hematopoiesis in response to gain or loss of GIPR signaling was relatively modest. Conclusion: These studies identify a functional gut hormone-BM axis positioned for the transduction of signals linking nutrient availability to the control of TLR and Notch genes regulating hematopoiesis. Nevertheless, stimulation or loss of GIPR signaling has minimal impact on basal hematopoiesis or the physiological response to hematopoietic stress.http://www.sciencedirect.com/science/article/pii/S221287782030082XGlucose-dependent insulinotropic polypeptide receptorBone marrowHematopoiesisMyeloid cellsInflammation
collection DOAJ
language English
format Article
sources DOAJ
author Gemma Pujadas
Elodie M. Varin
Laurie L. Baggio
Erin E. Mulvihill
K.W.Annie Bang
Jacqueline A. Koehler
Dianne Matthews
Daniel J. Drucker
spellingShingle Gemma Pujadas
Elodie M. Varin
Laurie L. Baggio
Erin E. Mulvihill
K.W.Annie Bang
Jacqueline A. Koehler
Dianne Matthews
Daniel J. Drucker
The gut hormone receptor GIPR links energy availability to the control of hematopoiesis
Molecular Metabolism
Glucose-dependent insulinotropic polypeptide receptor
Bone marrow
Hematopoiesis
Myeloid cells
Inflammation
author_facet Gemma Pujadas
Elodie M. Varin
Laurie L. Baggio
Erin E. Mulvihill
K.W.Annie Bang
Jacqueline A. Koehler
Dianne Matthews
Daniel J. Drucker
author_sort Gemma Pujadas
title The gut hormone receptor GIPR links energy availability to the control of hematopoiesis
title_short The gut hormone receptor GIPR links energy availability to the control of hematopoiesis
title_full The gut hormone receptor GIPR links energy availability to the control of hematopoiesis
title_fullStr The gut hormone receptor GIPR links energy availability to the control of hematopoiesis
title_full_unstemmed The gut hormone receptor GIPR links energy availability to the control of hematopoiesis
title_sort gut hormone receptor gipr links energy availability to the control of hematopoiesis
publisher Elsevier
series Molecular Metabolism
issn 2212-8778
publishDate 2020-09-01
description Objective: Glucose-dependent insulinotropic polypeptide (GIP) conveys information from ingested nutrients to peripheral tissues, signaling energy availability. The GIP Receptor (GIPR) is also expressed in the bone marrow, notably in cells of the myeloid lineage. However, the importance of gain and loss of GIPR signaling for diverse hematopoietic responses remains unclear. Methods: We assessed the expression of the Gipr in bone marrow (BM) lineages and examined functional roles for the GIPR in control of hematopoiesis. Bone marrow responses were studied in (i) mice fed regular or energy-rich diets, (ii) mice treated with hematopoietic stressors including acute 5-fluorouracil (5-FU), pamsaccharide (LPS), and Pam3CysSerLys4 (Pam3CSK4), with or without pharmacological administration of a GIPR agonist, and (iii) mice with global (Gipr−/−) or selective deletion of the GIPR (GiprTie2−/−) with and without bone marrow transplantation (BMT). Results: Gipr is expressed within T cells, myeloid cells, and myeloid precursors; however, these cell populations were not different in peripheral blood, spleen, or BM of Gipr−/− and GiprTie2−/− mice. Nevertheless, gain and loss of function studies revealed that GIPR signaling controls the expression of BM Toll-like receptor (TLR) and Notch-related genes regulating hematopoiesis. Loss of the BM GIPR attenuates the extent of adipose tissue inflammation and dysregulates the hematopoietic response to BMT. GIPR agonism modified BM gene expression profiles following 5-FU and Pam3CSK4 whereas loss of the Gipr altered the hematopoietic responses to energy excess, two TLR ligands, and 5-FU. However, the magnitude of the cellular changes in hematopoiesis in response to gain or loss of GIPR signaling was relatively modest. Conclusion: These studies identify a functional gut hormone-BM axis positioned for the transduction of signals linking nutrient availability to the control of TLR and Notch genes regulating hematopoiesis. Nevertheless, stimulation or loss of GIPR signaling has minimal impact on basal hematopoiesis or the physiological response to hematopoietic stress.
topic Glucose-dependent insulinotropic polypeptide receptor
Bone marrow
Hematopoiesis
Myeloid cells
Inflammation
url http://www.sciencedirect.com/science/article/pii/S221287782030082X
work_keys_str_mv AT gemmapujadas theguthormonereceptorgiprlinksenergyavailabilitytothecontrolofhematopoiesis
AT elodiemvarin theguthormonereceptorgiprlinksenergyavailabilitytothecontrolofhematopoiesis
AT laurielbaggio theguthormonereceptorgiprlinksenergyavailabilitytothecontrolofhematopoiesis
AT erinemulvihill theguthormonereceptorgiprlinksenergyavailabilitytothecontrolofhematopoiesis
AT kwanniebang theguthormonereceptorgiprlinksenergyavailabilitytothecontrolofhematopoiesis
AT jacquelineakoehler theguthormonereceptorgiprlinksenergyavailabilitytothecontrolofhematopoiesis
AT diannematthews theguthormonereceptorgiprlinksenergyavailabilitytothecontrolofhematopoiesis
AT danieljdrucker theguthormonereceptorgiprlinksenergyavailabilitytothecontrolofhematopoiesis
AT gemmapujadas guthormonereceptorgiprlinksenergyavailabilitytothecontrolofhematopoiesis
AT elodiemvarin guthormonereceptorgiprlinksenergyavailabilitytothecontrolofhematopoiesis
AT laurielbaggio guthormonereceptorgiprlinksenergyavailabilitytothecontrolofhematopoiesis
AT erinemulvihill guthormonereceptorgiprlinksenergyavailabilitytothecontrolofhematopoiesis
AT kwanniebang guthormonereceptorgiprlinksenergyavailabilitytothecontrolofhematopoiesis
AT jacquelineakoehler guthormonereceptorgiprlinksenergyavailabilitytothecontrolofhematopoiesis
AT diannematthews guthormonereceptorgiprlinksenergyavailabilitytothecontrolofhematopoiesis
AT danieljdrucker guthormonereceptorgiprlinksenergyavailabilitytothecontrolofhematopoiesis
_version_ 1724475447801020416