Fault-Tolerant Control of a Nonlinear Process with Input Constraints

A Fault-Tolerant Control (FTC) methodology has been presented for nonlinear processes being imposed by control input constraints. The proposed methodology uses a combination of Feedback Linearization and Model Predictive Control (FLMPC) schemes. The resulting constraints in the transformed process w...

Full description

Bibliographic Details
Main Authors: Jamal Gholami Ahangarani, Karim Salahshoor, Behzad Moshiri
Format: Article
Language:English
Published: Iranian Institute of Research and Development in Chemical Industries (IRDCI)-ACECR 2012-09-01
Series:Iranian Journal of Chemistry & Chemical Engineering
Subjects:
Online Access:http://www.ijcce.ac.ir/article_5960_71e7e3c4dcf14e76062c4f677d4dbd95.pdf
Description
Summary:A Fault-Tolerant Control (FTC) methodology has been presented for nonlinear processes being imposed by control input constraints. The proposed methodology uses a combination of Feedback Linearization and Model Predictive Control (FLMPC) schemes. The resulting constraints in the transformed process will be dependent on the actual evolving states, making their incorporation in the design context a non-trivial task. A feasible direction method has been integrated in the design procedure based on active set technique to resolve the challenging constraint–based FLMPC problem. The formulated FLMPC design method is utilized to develop a FTC scheme by providing a set of backup control configurations for a CSTR benchmark process. The successful performance of the proposed FTC methodology has been demonstrated via a category of common fault scenarios by exercising an arbitrary replacement of control configurations through a supervisor to maintain the CSTR operation at an unstable desired steady-state point.
ISSN:1021-9986
1021-9986