Parabolic Equation Modeling of Electromagnetic Wave Propagation over Rough Sea Surfaces
The parabolic equation is an efficient numerical solution for electromagnetic wave propagation. In order to address the difficulties in predicting electromagnetic wave propagation in the maritime environment caused by atmospheric dust and rough sea surfaces, and the shortcomings of the existing rese...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-03-01
|
Series: | Sensors |
Subjects: | |
Online Access: | http://www.mdpi.com/1424-8220/19/5/1252 |
id |
doaj-e1d2b31d617b493b8d9f932253df2ce6 |
---|---|
record_format |
Article |
spelling |
doaj-e1d2b31d617b493b8d9f932253df2ce62020-11-25T02:14:51ZengMDPI AGSensors1424-82202019-03-01195125210.3390/s19051252s19051252Parabolic Equation Modeling of Electromagnetic Wave Propagation over Rough Sea SurfacesYing Gao0Qun Shao1Binzhou Yan2Qifan Li3Shuxia Guo4School of Marine Science and Technology, Northwestern Polytechnical University, Xi′an 710072, ChinaSchool of Marine Science and Technology, Northwestern Polytechnical University, Xi′an 710072, ChinaSchool of Marine Science and Technology, Northwestern Polytechnical University, Xi′an 710072, ChinaSchool of Marine Science and Technology, Northwestern Polytechnical University, Xi′an 710072, ChinaScience and Technology on UAV Laboratory, Northwestern Polytechnical University, Xi′an 710072, ChinaThe parabolic equation is an efficient numerical solution for electromagnetic wave propagation. In order to address the difficulties in predicting electromagnetic wave propagation in the maritime environment caused by atmospheric dust and rough sea surfaces, and the shortcomings of the existing research that cannot fully reflect the rough characteristics of sea surfaces, the authors have modelled electromagnetic wave propagation in the maritime environment, including in the presence of atmospheric dust. In this study the authors present a parabolic equation modeling method for calculating the electromagnetic wave propagation over rough sea surfaces. Firstly, the rough sea surface is generated by building a double summation model of three-dimensional random sea surface. Then, combined with the piecewise linear shift transformation method of the parabolic equation model, the parabolic equation random sea surface model is constructed, and the electromagnetic wave propagation characteristics in a rough sea environment are analyzed. Finally, a large number of results are compared with the Miler-Brown model and shadow effect model in rough sea environments, which verifies that the random sea surface model can better characterize the influence of rough sea surfaces on electromagnetic wave propagation. The model can be used to improve the reliability of marine microwave communication links and the detection performance of ship-borne radar.http://www.mdpi.com/1424-8220/19/5/1252parabolic equationelectromagnetic wave propagationrough sea surfaceatmospheric dustrandomly rough sea surface model |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ying Gao Qun Shao Binzhou Yan Qifan Li Shuxia Guo |
spellingShingle |
Ying Gao Qun Shao Binzhou Yan Qifan Li Shuxia Guo Parabolic Equation Modeling of Electromagnetic Wave Propagation over Rough Sea Surfaces Sensors parabolic equation electromagnetic wave propagation rough sea surface atmospheric dust randomly rough sea surface model |
author_facet |
Ying Gao Qun Shao Binzhou Yan Qifan Li Shuxia Guo |
author_sort |
Ying Gao |
title |
Parabolic Equation Modeling of Electromagnetic Wave Propagation over Rough Sea Surfaces |
title_short |
Parabolic Equation Modeling of Electromagnetic Wave Propagation over Rough Sea Surfaces |
title_full |
Parabolic Equation Modeling of Electromagnetic Wave Propagation over Rough Sea Surfaces |
title_fullStr |
Parabolic Equation Modeling of Electromagnetic Wave Propagation over Rough Sea Surfaces |
title_full_unstemmed |
Parabolic Equation Modeling of Electromagnetic Wave Propagation over Rough Sea Surfaces |
title_sort |
parabolic equation modeling of electromagnetic wave propagation over rough sea surfaces |
publisher |
MDPI AG |
series |
Sensors |
issn |
1424-8220 |
publishDate |
2019-03-01 |
description |
The parabolic equation is an efficient numerical solution for electromagnetic wave propagation. In order to address the difficulties in predicting electromagnetic wave propagation in the maritime environment caused by atmospheric dust and rough sea surfaces, and the shortcomings of the existing research that cannot fully reflect the rough characteristics of sea surfaces, the authors have modelled electromagnetic wave propagation in the maritime environment, including in the presence of atmospheric dust. In this study the authors present a parabolic equation modeling method for calculating the electromagnetic wave propagation over rough sea surfaces. Firstly, the rough sea surface is generated by building a double summation model of three-dimensional random sea surface. Then, combined with the piecewise linear shift transformation method of the parabolic equation model, the parabolic equation random sea surface model is constructed, and the electromagnetic wave propagation characteristics in a rough sea environment are analyzed. Finally, a large number of results are compared with the Miler-Brown model and shadow effect model in rough sea environments, which verifies that the random sea surface model can better characterize the influence of rough sea surfaces on electromagnetic wave propagation. The model can be used to improve the reliability of marine microwave communication links and the detection performance of ship-borne radar. |
topic |
parabolic equation electromagnetic wave propagation rough sea surface atmospheric dust randomly rough sea surface model |
url |
http://www.mdpi.com/1424-8220/19/5/1252 |
work_keys_str_mv |
AT yinggao parabolicequationmodelingofelectromagneticwavepropagationoverroughseasurfaces AT qunshao parabolicequationmodelingofelectromagneticwavepropagationoverroughseasurfaces AT binzhouyan parabolicequationmodelingofelectromagneticwavepropagationoverroughseasurfaces AT qifanli parabolicequationmodelingofelectromagneticwavepropagationoverroughseasurfaces AT shuxiaguo parabolicequationmodelingofelectromagneticwavepropagationoverroughseasurfaces |
_version_ |
1724899409015078912 |