Dark ice dynamics of the south-west Greenland Ice Sheet
Runoff from the Greenland Ice Sheet (GrIS) has increased in recent years due largely to changes in atmospheric circulation and atmospheric warming. Albedo reductions resulting from these changes have amplified surface melting. Some of the largest declines in GrIS albedo have occurred in the ablat...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2017-11-01
|
Series: | The Cryosphere |
Online Access: | https://www.the-cryosphere.net/11/2491/2017/tc-11-2491-2017.pdf |
id |
doaj-e1f1d8f6c3574218a9dd7ca934970dc7 |
---|---|
record_format |
Article |
spelling |
doaj-e1f1d8f6c3574218a9dd7ca934970dc72020-11-24T22:28:07ZengCopernicus PublicationsThe Cryosphere1994-04161994-04242017-11-01112491250610.5194/tc-11-2491-2017Dark ice dynamics of the south-west Greenland Ice SheetA. J. Tedstone0J. L. Bamber1J. M. Cook2C. J. Williamson3X. Fettweis4A. J. Hodson5A. J. Hodson6M. Tranter7Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, UKBristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, UKDepartment of Geography, University of Sheffield, Winter Street, Sheffield, UKBristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, UKLaboratory of Climatology, Department of Geography, University of Liège, Liège, BelgiumDepartment of Geography, University of Sheffield, Winter Street, Sheffield, UKArctic Geology, University Centre in Svalbard, Longyearbyen, NorwayBristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, UKRunoff from the Greenland Ice Sheet (GrIS) has increased in recent years due largely to changes in atmospheric circulation and atmospheric warming. Albedo reductions resulting from these changes have amplified surface melting. Some of the largest declines in GrIS albedo have occurred in the ablation zone of the south-west sector and are associated with the development of <q>dark</q> ice surfaces. Field observations at local scales reveal that a variety of light-absorbing impurities (LAIs) can be present on the surface, ranging from inorganic particulates to cryoconite materials and ice algae. Meanwhile, satellite observations show that the areal extent of dark ice has varied significantly between recent successive melt seasons. However, the processes that drive such large interannual variability in dark ice extent remain essentially unconstrained. At present we are therefore unable to project how the albedo of bare ice sectors of the GrIS will evolve in the future, causing uncertainty in the projected sea level contribution from the GrIS over the coming decades. <br><br> Here we use MODIS satellite imagery to examine dark ice dynamics on the south-west GrIS each year from 2000 to 2016. We quantify dark ice in terms of its annual extent, duration, intensity and timing of first appearance. Not only does dark ice extent vary significantly between years but so too does its duration (from 0 to > 80 % of June–July–August, JJA), intensity and the timing of its first appearance. Comparison of dark ice dynamics with potential meteorological drivers from the regional climate model MAR reveals that the JJA sensible heat flux, the number of positive minimum-air-temperature days and the timing of bare ice appearance are significant interannual synoptic controls. <br><br> We use these findings to identify the surface processes which are most likely to explain recent dark ice dynamics. We suggest that whilst the spatial distribution of dark ice is best explained by outcropping of particulates from ablating ice, these particulates alone do not drive dark ice dynamics. Instead, they may enable the growth of pigmented ice algal assemblages which cause visible surface darkening, but only when the climatological prerequisites of liquid meltwater presence and sufficient photosynthetically active radiation fluxes are met. Further field studies are required to fully constrain the processes by which ice algae growth proceeds and the apparent dependency of algae growth on melt-out particulates.https://www.the-cryosphere.net/11/2491/2017/tc-11-2491-2017.pdf |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
A. J. Tedstone J. L. Bamber J. M. Cook C. J. Williamson X. Fettweis A. J. Hodson A. J. Hodson M. Tranter |
spellingShingle |
A. J. Tedstone J. L. Bamber J. M. Cook C. J. Williamson X. Fettweis A. J. Hodson A. J. Hodson M. Tranter Dark ice dynamics of the south-west Greenland Ice Sheet The Cryosphere |
author_facet |
A. J. Tedstone J. L. Bamber J. M. Cook C. J. Williamson X. Fettweis A. J. Hodson A. J. Hodson M. Tranter |
author_sort |
A. J. Tedstone |
title |
Dark ice dynamics of the south-west Greenland Ice Sheet |
title_short |
Dark ice dynamics of the south-west Greenland Ice Sheet |
title_full |
Dark ice dynamics of the south-west Greenland Ice Sheet |
title_fullStr |
Dark ice dynamics of the south-west Greenland Ice Sheet |
title_full_unstemmed |
Dark ice dynamics of the south-west Greenland Ice Sheet |
title_sort |
dark ice dynamics of the south-west greenland ice sheet |
publisher |
Copernicus Publications |
series |
The Cryosphere |
issn |
1994-0416 1994-0424 |
publishDate |
2017-11-01 |
description |
Runoff from the Greenland Ice Sheet (GrIS) has increased in recent years due
largely to changes in atmospheric circulation and atmospheric warming. Albedo
reductions resulting from these changes have amplified surface melting. Some
of the largest declines in GrIS albedo have occurred in the ablation zone of
the south-west sector and are associated with the development of <q>dark</q> ice
surfaces. Field observations at local scales reveal that a variety of
light-absorbing impurities (LAIs) can be present on the surface, ranging from
inorganic particulates to cryoconite materials and ice algae. Meanwhile,
satellite observations show that the areal extent of dark ice has varied
significantly between recent successive melt seasons. However, the processes
that drive such large interannual variability in dark ice extent remain
essentially unconstrained. At present we are therefore unable to project how
the albedo of bare ice sectors of the GrIS will evolve in the future, causing
uncertainty in the projected sea level contribution from the GrIS over the
coming decades.
<br><br>
Here we use MODIS satellite imagery to examine dark ice dynamics on the
south-west GrIS each year from 2000 to 2016. We quantify dark ice in terms of
its annual extent, duration, intensity and timing of first appearance. Not
only does dark ice extent vary significantly between years but so too does
its duration (from 0 to > 80 % of June–July–August, JJA), intensity and the timing of its first appearance. Comparison of dark ice dynamics with potential meteorological drivers from the regional climate model MAR reveals that the JJA sensible heat flux, the number of positive
minimum-air-temperature days and the timing of bare ice appearance are
significant interannual synoptic controls.
<br><br>
We use these findings to identify the surface processes which are most likely
to explain recent dark ice dynamics. We suggest that whilst the spatial
distribution of dark ice is best explained by outcropping of particulates
from ablating ice, these particulates alone do not drive dark ice dynamics.
Instead, they may enable the growth of pigmented ice algal assemblages which
cause visible surface darkening, but only when the climatological
prerequisites of liquid meltwater presence and sufficient
photosynthetically active radiation fluxes are met. Further field studies are
required to fully constrain the processes by which ice algae growth proceeds
and the apparent dependency of algae growth on melt-out particulates. |
url |
https://www.the-cryosphere.net/11/2491/2017/tc-11-2491-2017.pdf |
work_keys_str_mv |
AT ajtedstone darkicedynamicsofthesouthwestgreenlandicesheet AT jlbamber darkicedynamicsofthesouthwestgreenlandicesheet AT jmcook darkicedynamicsofthesouthwestgreenlandicesheet AT cjwilliamson darkicedynamicsofthesouthwestgreenlandicesheet AT xfettweis darkicedynamicsofthesouthwestgreenlandicesheet AT ajhodson darkicedynamicsofthesouthwestgreenlandicesheet AT ajhodson darkicedynamicsofthesouthwestgreenlandicesheet AT mtranter darkicedynamicsofthesouthwestgreenlandicesheet |
_version_ |
1725747784023277568 |