Characterization of a Two-Photon Quantum Battery: Initial Conditions, Stability and Work Extraction

We consider a quantum battery that is based on a two-level system coupled with a cavity radiation by means of a two-photon interaction. Various figures of merit, such as stored energy, average charging power, energy fluctuations, and extractable work are investigated, considering, as possible initia...

Full description

Bibliographic Details
Main Authors: Anna Delmonte, Alba Crescente, Matteo Carrega, Dario Ferraro, Maura Sassetti
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/23/5/612
Description
Summary:We consider a quantum battery that is based on a two-level system coupled with a cavity radiation by means of a two-photon interaction. Various figures of merit, such as stored energy, average charging power, energy fluctuations, and extractable work are investigated, considering, as possible initial conditions for the cavity, a Fock state, a coherent state, and a squeezed state. We show that the first state leads to better performances for the battery. However, a coherent state with the same average number of photons, even if it is affected by stronger fluctuations in the stored energy, results in quite interesting performance, in particular since it allows for almost completely extracting the stored energy as usable work at short enough times.
ISSN:1099-4300