Hydrogen Production from Methane Cracking in Dielectric Barrier Discharge Catalytic Plasma Reactor Using a Nanocatalyst

The study experimentally investigated a novel approach for producing hydrogen from methane cracking in dielectric barrier discharge catalytic plasma reactor using a nanocatalyst. Plasma-catalytic methane (CH<sub>4</sub>) cracking was undertaken in a dielectric barrier discharge (DBD) cat...

Full description

Bibliographic Details
Main Authors: Asif Hussain Khoja, Abul Kalam Azad, Faisal Saleem, Bilal Alam Khan, Salman Raza Naqvi, Muhammad Taqi Mehran, Nor Aishah Saidina Amin
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/13/22/5921
id doaj-e232f1756e284ea3b26d4039f993289d
record_format Article
spelling doaj-e232f1756e284ea3b26d4039f993289d2020-11-25T04:03:32ZengMDPI AGEnergies1996-10732020-11-01135921592110.3390/en13225921Hydrogen Production from Methane Cracking in Dielectric Barrier Discharge Catalytic Plasma Reactor Using a NanocatalystAsif Hussain Khoja0Abul Kalam Azad1Faisal Saleem2Bilal Alam Khan3Salman Raza Naqvi4Muhammad Taqi Mehran5Nor Aishah Saidina Amin6Fossil Fuels Laboratory, Department of Thermal Energy Engineering, US-Pakistan Centre for Advanced Studies in Energy (USPCAS-E), National University of Sciences & Technology (NUST), Sector H-12, Islamabad 44000, PakistanSchool of Engineering and Technology, Central Queensland University, 120 Spencer Street, Melbourne, VIC 3000, AustraliaDepartment of Chemical and Polymer Engineering, University of Engineering and Technology, Lahore 38000, Faisalabad Campus, PakistanDepartment of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, ItalySchool of Chemical and Materials Engineering, National University of Sciences & Technology (NUST), Sector H-12, Islamabad 44000, PakistanSchool of Chemical and Materials Engineering, National University of Sciences & Technology (NUST), Sector H-12, Islamabad 44000, PakistanChemical Reaction Engineering Group, School of Chemical & Energy Engineering, Faculty of Engineering, University Technology Malaysia (UTM), Skudai, Johor Bahru 81310, MalaysiaThe study experimentally investigated a novel approach for producing hydrogen from methane cracking in dielectric barrier discharge catalytic plasma reactor using a nanocatalyst. Plasma-catalytic methane (CH<sub>4</sub>) cracking was undertaken in a dielectric barrier discharge (DBD) catalytic plasma reactor using Ni/MgAl<sub>2</sub>O<sub>4</sub>. The Ni/MgAl<sub>2</sub>O<sub>4</sub> was synthesised through co-precipitation followed customised hydrothermal method. The physicochemical properties of the catalyst were examined using X-ray diffraction (XRD), scanning electron microscopy—energy dispersive X-ray spectrometry (SEM-EDX) and thermogravimetric analysis (TGA). The Ni/MgAl<sub>2</sub>O<sub>4</sub> shows a porous structure spinel MgAl<sub>2</sub>O<sub>4</sub> and thermal stability. In the catalytic-plasma methane cracking, the Ni/MgAl<sub>2</sub>O<sub>4</sub> shows 80% of the maximum conversion of CH<sub>4</sub> with H<sub>2</sub> selectivity 75%. Furthermore, the stability of the catalyst was encouraging 16 h with CH<sub>4</sub> conversion above 75%, and the selectivity of H<sub>2</sub> was above 70%. This is attributed to the synergistic effect of the catalyst and plasma. The plasma-catalytic CH<sub>4</sub> cracking is a promising technology for the simultaneous H<sub>2</sub> and carbon nanotubes (CNTs) production for energy storage applications.https://www.mdpi.com/1996-1073/13/22/5921hydrogen productionmethane crackingDBD plasma reactorMgAl<sub>2</sub>O<sub>4</sub>CNTs
collection DOAJ
language English
format Article
sources DOAJ
author Asif Hussain Khoja
Abul Kalam Azad
Faisal Saleem
Bilal Alam Khan
Salman Raza Naqvi
Muhammad Taqi Mehran
Nor Aishah Saidina Amin
spellingShingle Asif Hussain Khoja
Abul Kalam Azad
Faisal Saleem
Bilal Alam Khan
Salman Raza Naqvi
Muhammad Taqi Mehran
Nor Aishah Saidina Amin
Hydrogen Production from Methane Cracking in Dielectric Barrier Discharge Catalytic Plasma Reactor Using a Nanocatalyst
Energies
hydrogen production
methane cracking
DBD plasma reactor
MgAl<sub>2</sub>O<sub>4</sub>
CNTs
author_facet Asif Hussain Khoja
Abul Kalam Azad
Faisal Saleem
Bilal Alam Khan
Salman Raza Naqvi
Muhammad Taqi Mehran
Nor Aishah Saidina Amin
author_sort Asif Hussain Khoja
title Hydrogen Production from Methane Cracking in Dielectric Barrier Discharge Catalytic Plasma Reactor Using a Nanocatalyst
title_short Hydrogen Production from Methane Cracking in Dielectric Barrier Discharge Catalytic Plasma Reactor Using a Nanocatalyst
title_full Hydrogen Production from Methane Cracking in Dielectric Barrier Discharge Catalytic Plasma Reactor Using a Nanocatalyst
title_fullStr Hydrogen Production from Methane Cracking in Dielectric Barrier Discharge Catalytic Plasma Reactor Using a Nanocatalyst
title_full_unstemmed Hydrogen Production from Methane Cracking in Dielectric Barrier Discharge Catalytic Plasma Reactor Using a Nanocatalyst
title_sort hydrogen production from methane cracking in dielectric barrier discharge catalytic plasma reactor using a nanocatalyst
publisher MDPI AG
series Energies
issn 1996-1073
publishDate 2020-11-01
description The study experimentally investigated a novel approach for producing hydrogen from methane cracking in dielectric barrier discharge catalytic plasma reactor using a nanocatalyst. Plasma-catalytic methane (CH<sub>4</sub>) cracking was undertaken in a dielectric barrier discharge (DBD) catalytic plasma reactor using Ni/MgAl<sub>2</sub>O<sub>4</sub>. The Ni/MgAl<sub>2</sub>O<sub>4</sub> was synthesised through co-precipitation followed customised hydrothermal method. The physicochemical properties of the catalyst were examined using X-ray diffraction (XRD), scanning electron microscopy—energy dispersive X-ray spectrometry (SEM-EDX) and thermogravimetric analysis (TGA). The Ni/MgAl<sub>2</sub>O<sub>4</sub> shows a porous structure spinel MgAl<sub>2</sub>O<sub>4</sub> and thermal stability. In the catalytic-plasma methane cracking, the Ni/MgAl<sub>2</sub>O<sub>4</sub> shows 80% of the maximum conversion of CH<sub>4</sub> with H<sub>2</sub> selectivity 75%. Furthermore, the stability of the catalyst was encouraging 16 h with CH<sub>4</sub> conversion above 75%, and the selectivity of H<sub>2</sub> was above 70%. This is attributed to the synergistic effect of the catalyst and plasma. The plasma-catalytic CH<sub>4</sub> cracking is a promising technology for the simultaneous H<sub>2</sub> and carbon nanotubes (CNTs) production for energy storage applications.
topic hydrogen production
methane cracking
DBD plasma reactor
MgAl<sub>2</sub>O<sub>4</sub>
CNTs
url https://www.mdpi.com/1996-1073/13/22/5921
work_keys_str_mv AT asifhussainkhoja hydrogenproductionfrommethanecrackingindielectricbarrierdischargecatalyticplasmareactorusingananocatalyst
AT abulkalamazad hydrogenproductionfrommethanecrackingindielectricbarrierdischargecatalyticplasmareactorusingananocatalyst
AT faisalsaleem hydrogenproductionfrommethanecrackingindielectricbarrierdischargecatalyticplasmareactorusingananocatalyst
AT bilalalamkhan hydrogenproductionfrommethanecrackingindielectricbarrierdischargecatalyticplasmareactorusingananocatalyst
AT salmanrazanaqvi hydrogenproductionfrommethanecrackingindielectricbarrierdischargecatalyticplasmareactorusingananocatalyst
AT muhammadtaqimehran hydrogenproductionfrommethanecrackingindielectricbarrierdischargecatalyticplasmareactorusingananocatalyst
AT noraishahsaidinaamin hydrogenproductionfrommethanecrackingindielectricbarrierdischargecatalyticplasmareactorusingananocatalyst
_version_ 1724439817990701056