Zero-Energy Modes, Fractional Fermion Numbers and The Index Theorem in a Vortex-Dirac Fermion System
Physics of topological materials has attracted much attention from both physicists and mathematicians recently. The index and the fermion number of Dirac fermions play an important role in topological insulators and topological superconductors. A zero-energy mode exists when Dirac fermions couple to...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-03-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/12/3/373 |
id |
doaj-e2a0adbde76c47e6ae6627f4a71bc4f5 |
---|---|
record_format |
Article |
spelling |
doaj-e2a0adbde76c47e6ae6627f4a71bc4f52020-11-24T21:53:48ZengMDPI AGSymmetry2073-89942020-03-0112337310.3390/sym12030373sym12030373Zero-Energy Modes, Fractional Fermion Numbers and The Index Theorem in a Vortex-Dirac Fermion SystemTakashi Yanagisawa0National Institute of Advanced Industrial Science and Technology 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, JapanPhysics of topological materials has attracted much attention from both physicists and mathematicians recently. The index and the fermion number of Dirac fermions play an important role in topological insulators and topological superconductors. A zero-energy mode exists when Dirac fermions couple to objects with soliton-like structure such as kinks, vortices, monopoles, strings, and branes. We discuss a system of Dirac fermions interacting with a vortex and a kink. This kind of systems will be realized on the surface of topological insulators where Dirac fermions exist. The fermion number is fractionalized and this is related to the presence of fermion zero-energy excitation modes. A zero-energy mode can be regarded as a Majorana fermion mode when the chemical potential vanishes. Our discussion includes the case where there is a half-flux quantum vortex associated with a kink in a magnetic field in a bilayer superconductor. A normalizable wave function of fermion zero-energy mode does not exist in the core of the half-flux quantum vortex. The index of Dirac operator and the fermion number have additional contributions when a soliton scalar field has a singularity.https://www.mdpi.com/2073-8994/12/3/373topological insulatorvortex, fractional quantizationdirac hamiltonianlayered superconductorindex theoremzero-energy modemajorana fermionfractional fermion number |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Takashi Yanagisawa |
spellingShingle |
Takashi Yanagisawa Zero-Energy Modes, Fractional Fermion Numbers and The Index Theorem in a Vortex-Dirac Fermion System Symmetry topological insulator vortex, fractional quantization dirac hamiltonian layered superconductor index theorem zero-energy mode majorana fermion fractional fermion number |
author_facet |
Takashi Yanagisawa |
author_sort |
Takashi Yanagisawa |
title |
Zero-Energy Modes, Fractional Fermion Numbers and The Index Theorem in a Vortex-Dirac Fermion System |
title_short |
Zero-Energy Modes, Fractional Fermion Numbers and The Index Theorem in a Vortex-Dirac Fermion System |
title_full |
Zero-Energy Modes, Fractional Fermion Numbers and The Index Theorem in a Vortex-Dirac Fermion System |
title_fullStr |
Zero-Energy Modes, Fractional Fermion Numbers and The Index Theorem in a Vortex-Dirac Fermion System |
title_full_unstemmed |
Zero-Energy Modes, Fractional Fermion Numbers and The Index Theorem in a Vortex-Dirac Fermion System |
title_sort |
zero-energy modes, fractional fermion numbers and the index theorem in a vortex-dirac fermion system |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2020-03-01 |
description |
Physics of topological materials has attracted much attention from both physicists and mathematicians recently. The index and the fermion number of Dirac fermions play an important role in topological insulators and topological superconductors. A zero-energy mode exists when Dirac fermions couple to objects with soliton-like structure such as kinks, vortices, monopoles, strings, and branes. We discuss a system of Dirac fermions interacting with a vortex and a kink. This kind of systems will be realized on the surface of topological insulators where Dirac fermions exist. The fermion number is fractionalized and this is related to the presence of fermion zero-energy excitation modes. A zero-energy mode can be regarded as a Majorana fermion mode when the chemical potential vanishes. Our discussion includes the case where there is a half-flux quantum vortex associated with a kink in a magnetic field in a bilayer superconductor. A normalizable wave function of fermion zero-energy mode does not exist in the core of the half-flux quantum vortex. The index of Dirac operator and the fermion number have additional contributions when a soliton scalar field has a singularity. |
topic |
topological insulator vortex, fractional quantization dirac hamiltonian layered superconductor index theorem zero-energy mode majorana fermion fractional fermion number |
url |
https://www.mdpi.com/2073-8994/12/3/373 |
work_keys_str_mv |
AT takashiyanagisawa zeroenergymodesfractionalfermionnumbersandtheindextheoreminavortexdiracfermionsystem |
_version_ |
1725870032697688064 |