A Memetic Lagrangian Heuristic for the 0-1 Multidimensional Knapsack Problem

We present a new evolutionary algorithm to solve the 0-1 multidimensional knapsack problem. We tackle the problem using duality concept, differently from traditional approaches. Our method is based on Lagrangian relaxation. Lagrange multipliers transform the problem, keeping the optimality as wel...

Full description

Bibliographic Details
Main Authors: Yourim Yoon, Yong-Hyuk Kim
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2013/474852
Description
Summary:We present a new evolutionary algorithm to solve the 0-1 multidimensional knapsack problem. We tackle the problem using duality concept, differently from traditional approaches. Our method is based on Lagrangian relaxation. Lagrange multipliers transform the problem, keeping the optimality as well as decreasing the complexity. However, it is not easy to find Lagrange multipliers nearest to the capacity constraints of the problem. Through empirical investigation of Lagrangian space, we can see the potentiality of using a memetic algorithm. So we use a memetic algorithm to find the optimal Lagrange multipliers. We show the efficiency of the proposed method by the experiments on well-known benchmark data.
ISSN:1026-0226
1607-887X