Resolving ecological feedbacks on the ocean carbon sink in Earth system models

<p>The Earth's oceans are one of the largest sinks in the Earth system for anthropogenic <span class="inline-formula">CO<sub>2</sub></span> emissions, acting as a negative feedback on climate change. Earth system models project that climate change will le...

Full description

Bibliographic Details
Main Authors: D. I. Armstrong McKay, S. E. Cornell, K. Richardson, J. Rockström
Format: Article
Language:English
Published: Copernicus Publications 2021-07-01
Series:Earth System Dynamics
Online Access:https://esd.copernicus.org/articles/12/797/2021/esd-12-797-2021.pdf
id doaj-e2d8ff8bff3f4ba38b758ff267cdf3ef
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author D. I. Armstrong McKay
D. I. Armstrong McKay
S. E. Cornell
S. E. Cornell
K. Richardson
J. Rockström
J. Rockström
spellingShingle D. I. Armstrong McKay
D. I. Armstrong McKay
S. E. Cornell
S. E. Cornell
K. Richardson
J. Rockström
J. Rockström
Resolving ecological feedbacks on the ocean carbon sink in Earth system models
Earth System Dynamics
author_facet D. I. Armstrong McKay
D. I. Armstrong McKay
S. E. Cornell
S. E. Cornell
K. Richardson
J. Rockström
J. Rockström
author_sort D. I. Armstrong McKay
title Resolving ecological feedbacks on the ocean carbon sink in Earth system models
title_short Resolving ecological feedbacks on the ocean carbon sink in Earth system models
title_full Resolving ecological feedbacks on the ocean carbon sink in Earth system models
title_fullStr Resolving ecological feedbacks on the ocean carbon sink in Earth system models
title_full_unstemmed Resolving ecological feedbacks on the ocean carbon sink in Earth system models
title_sort resolving ecological feedbacks on the ocean carbon sink in earth system models
publisher Copernicus Publications
series Earth System Dynamics
issn 2190-4979
2190-4987
publishDate 2021-07-01
description <p>The Earth's oceans are one of the largest sinks in the Earth system for anthropogenic <span class="inline-formula">CO<sub>2</sub></span> emissions, acting as a negative feedback on climate change. Earth system models project that climate change will lead to a weakening ocean carbon uptake rate as warm water holds less dissolved <span class="inline-formula">CO<sub>2</sub></span> and as biological productivity declines. However, most Earth system models do not incorporate the impact of warming on bacterial remineralisation and rely on simplified representations of plankton ecology that do not resolve the potential impact of climate change on ecosystem structure or elemental stoichiometry. Here, we use a recently developed extension of the cGEnIE (carbon-centric Grid Enabled Integrated Earth system model), ecoGEnIE, featuring a trait-based scheme for plankton ecology (ECOGEM), and also incorporate cGEnIE's temperature-dependent remineralisation (TDR) scheme. This enables evaluation of the impact of both ecological dynamics and temperature-dependent remineralisation on particulate organic carbon (POC) export in response to climate change. We find that including TDR increases cumulative POC export relative to default runs due to increased nutrient recycling (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>+</mo><mo>∼</mo><mn mathvariant="normal">1.3</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="38pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="ab955d47472090097fcf2da4cfa00acc"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="esd-12-797-2021-ie00001.svg" width="38pt" height="10pt" src="esd-12-797-2021-ie00001.png"/></svg:svg></span></span> %), whereas ECOGEM decreases cumulative POC export by enabling a shift to smaller plankton classes (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mo>∼</mo><mn mathvariant="normal">0.9</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="38pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="2a1e22fdd6a446289bcd4e2997c0ddbb"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="esd-12-797-2021-ie00002.svg" width="38pt" height="10pt" src="esd-12-797-2021-ie00002.png"/></svg:svg></span></span> %). However, interactions with carbonate chemistry cause opposite sign responses for the carbon sink in both cases: TDR leads to a smaller sink relative to default runs (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mo>∼</mo><mn mathvariant="normal">1.0</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="38pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="c3682224f3ef72a74575c10b30e6a510"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="esd-12-797-2021-ie00003.svg" width="38pt" height="10pt" src="esd-12-797-2021-ie00003.png"/></svg:svg></span></span> %), whereas ECOGEM leads to a larger sink (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>+</mo><mo>∼</mo><mn mathvariant="normal">0.2</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="38pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="55c71b9ac445ec3176a594392e6502b8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="esd-12-797-2021-ie00004.svg" width="38pt" height="10pt" src="esd-12-797-2021-ie00004.png"/></svg:svg></span></span> %). Combining TDR and ECOGEM results in a net strengthening of POC export (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>+</mo><mo>∼</mo><mn mathvariant="normal">0.1</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="38pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="f80be17b860bccddb4a800d097e28f0f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="esd-12-797-2021-ie00005.svg" width="38pt" height="10pt" src="esd-12-797-2021-ie00005.png"/></svg:svg></span></span> %) and a net reduction in carbon sink (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mo>∼</mo><mn mathvariant="normal">0.7</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="38pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="b013a6912f5adbee198d17d21be166dc"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="esd-12-797-2021-ie00006.svg" width="38pt" height="10pt" src="esd-12-797-2021-ie00006.png"/></svg:svg></span></span> %) relative to default. These results illustrate the degree to which ecological dynamics and biodiversity modulate the strength of the biological pump, and demonstrate that Earth system models need to incorporate ecological complexity in order to resolve non-linear climate–biosphere feedbacks.</p>
url https://esd.copernicus.org/articles/12/797/2021/esd-12-797-2021.pdf
work_keys_str_mv AT diarmstrongmckay resolvingecologicalfeedbacksontheoceancarbonsinkinearthsystemmodels
AT diarmstrongmckay resolvingecologicalfeedbacksontheoceancarbonsinkinearthsystemmodels
AT secornell resolvingecologicalfeedbacksontheoceancarbonsinkinearthsystemmodels
AT secornell resolvingecologicalfeedbacksontheoceancarbonsinkinearthsystemmodels
AT krichardson resolvingecologicalfeedbacksontheoceancarbonsinkinearthsystemmodels
AT jrockstrom resolvingecologicalfeedbacksontheoceancarbonsinkinearthsystemmodels
AT jrockstrom resolvingecologicalfeedbacksontheoceancarbonsinkinearthsystemmodels
_version_ 1721303199584878592
spelling doaj-e2d8ff8bff3f4ba38b758ff267cdf3ef2021-07-14T08:57:59ZengCopernicus PublicationsEarth System Dynamics2190-49792190-49872021-07-011279781810.5194/esd-12-797-2021Resolving ecological feedbacks on the ocean carbon sink in Earth system modelsD. I. Armstrong McKay0D. I. Armstrong McKay1S. E. Cornell2S. E. Cornell3K. Richardson4J. Rockström5J. Rockström6Stockholm Resilience Centre, Stockholm University, Stockholm 106 91, SwedenBolin Centre for Climate Research, Stockholm University, Stockholm 106 91, SwedenStockholm Resilience Centre, Stockholm University, Stockholm 106 91, SwedenBolin Centre for Climate Research, Stockholm University, Stockholm 106 91, SwedenGlobe Institute, Center for Macroecology, Evolution and Climate, University of Copenhagen, Copenhagen 2100, DenmarkStockholm Resilience Centre, Stockholm University, Stockholm 106 91, SwedenPotsdam Institute for Climate Impact Research, Potsdam 14473, Germany<p>The Earth's oceans are one of the largest sinks in the Earth system for anthropogenic <span class="inline-formula">CO<sub>2</sub></span> emissions, acting as a negative feedback on climate change. Earth system models project that climate change will lead to a weakening ocean carbon uptake rate as warm water holds less dissolved <span class="inline-formula">CO<sub>2</sub></span> and as biological productivity declines. However, most Earth system models do not incorporate the impact of warming on bacterial remineralisation and rely on simplified representations of plankton ecology that do not resolve the potential impact of climate change on ecosystem structure or elemental stoichiometry. Here, we use a recently developed extension of the cGEnIE (carbon-centric Grid Enabled Integrated Earth system model), ecoGEnIE, featuring a trait-based scheme for plankton ecology (ECOGEM), and also incorporate cGEnIE's temperature-dependent remineralisation (TDR) scheme. This enables evaluation of the impact of both ecological dynamics and temperature-dependent remineralisation on particulate organic carbon (POC) export in response to climate change. We find that including TDR increases cumulative POC export relative to default runs due to increased nutrient recycling (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>+</mo><mo>∼</mo><mn mathvariant="normal">1.3</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="38pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="ab955d47472090097fcf2da4cfa00acc"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="esd-12-797-2021-ie00001.svg" width="38pt" height="10pt" src="esd-12-797-2021-ie00001.png"/></svg:svg></span></span> %), whereas ECOGEM decreases cumulative POC export by enabling a shift to smaller plankton classes (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mo>∼</mo><mn mathvariant="normal">0.9</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="38pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="2a1e22fdd6a446289bcd4e2997c0ddbb"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="esd-12-797-2021-ie00002.svg" width="38pt" height="10pt" src="esd-12-797-2021-ie00002.png"/></svg:svg></span></span> %). However, interactions with carbonate chemistry cause opposite sign responses for the carbon sink in both cases: TDR leads to a smaller sink relative to default runs (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mo>∼</mo><mn mathvariant="normal">1.0</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="38pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="c3682224f3ef72a74575c10b30e6a510"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="esd-12-797-2021-ie00003.svg" width="38pt" height="10pt" src="esd-12-797-2021-ie00003.png"/></svg:svg></span></span> %), whereas ECOGEM leads to a larger sink (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>+</mo><mo>∼</mo><mn mathvariant="normal">0.2</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="38pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="55c71b9ac445ec3176a594392e6502b8"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="esd-12-797-2021-ie00004.svg" width="38pt" height="10pt" src="esd-12-797-2021-ie00004.png"/></svg:svg></span></span> %). Combining TDR and ECOGEM results in a net strengthening of POC export (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M7" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>+</mo><mo>∼</mo><mn mathvariant="normal">0.1</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="38pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="f80be17b860bccddb4a800d097e28f0f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="esd-12-797-2021-ie00005.svg" width="38pt" height="10pt" src="esd-12-797-2021-ie00005.png"/></svg:svg></span></span> %) and a net reduction in carbon sink (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M8" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mo>∼</mo><mn mathvariant="normal">0.7</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="38pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="b013a6912f5adbee198d17d21be166dc"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="esd-12-797-2021-ie00006.svg" width="38pt" height="10pt" src="esd-12-797-2021-ie00006.png"/></svg:svg></span></span> %) relative to default. These results illustrate the degree to which ecological dynamics and biodiversity modulate the strength of the biological pump, and demonstrate that Earth system models need to incorporate ecological complexity in order to resolve non-linear climate–biosphere feedbacks.</p>https://esd.copernicus.org/articles/12/797/2021/esd-12-797-2021.pdf