Optimal Cooling System Design for Increasing the Crystal Growth Rate of Single-Crystal Silicon Ingots in the Czochralski Process Using the Crystal Growth Simulation
Here, we report a successfully modified Czochralski process system by introducing the cooling system and subsequent examination of the results using crystal growth simulation analysis. Two types of cooling system models have been designed, i.e., long type and double type cooling design (LTCD and DTC...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-09-01
|
Series: | Processes |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-9717/8/9/1077 |
Summary: | Here, we report a successfully modified Czochralski process system by introducing the cooling system and subsequent examination of the results using crystal growth simulation analysis. Two types of cooling system models have been designed, i.e., long type and double type cooling design (LTCD and DTCD) and their production quality of monocrystalline silicon ingot was compared with that of the basic type cooling design (BTCD) system. The designed cooling system improved the uniformity of the temperature gradient in the crystal and resulted in the significant decrease of the thermal stress. Moreover, the silicon monocrystalline ingot growth rate has been enhanced to 18% by using BTCD system. The detailed simulation results have been discussed in the manuscript. The present research demonstrates that the proposed cooling system would stand as a promising technique to be applied in CZ-Si crystal growth with a large size/high pulling rate. |
---|---|
ISSN: | 2227-9717 |