Biodegradable Piezoelectric Transducer for Powering Transient Implants

Transient implantable medical devices based on biodegradable electronics can be used for diagnostic and therapeutic purposes for a desired duration and undergo biodegradation, unlike their conventional counterparts. However, powering transient implants through biodegradable power sources remains und...

Full description

Bibliographic Details
Main Authors: Sophia Selvarajan, Albert Kim, Seung Hyun Song
Format: Article
Language:English
Published: IEEE 2020-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9057650/
Description
Summary:Transient implantable medical devices based on biodegradable electronics can be used for diagnostic and therapeutic purposes for a desired duration and undergo biodegradation, unlike their conventional counterparts. However, powering transient implants through biodegradable power sources remains under-explored. Here, we report biodegradable piezoelectric transducer fabricated using 0-3 composite film made of barium titanate nanoparticles and poly (L-lactic-co-glycolic) acid polymer (BT-PLGA). The proposed BT-PLGA can be utilized in two different powering schemes; ultrasonic powering and energy harvesting from low frequency acoustic waves. We demonstrated that the power density of the BT-PLGA transducer can reach up to 10 mW/cm<sup>2</sup> in ultrasonic powering. The energy harvesting from low frequency acoustic waves could also readily generate sufficient power for small electronics. The fabricated transducers underwent complete biodegradation in physiological conditions within 100 days. The development of the biodegradable piezoelectric transducer potentially provides a reliable power source for transient implants, especially for deeply seated bioelectronics. The output performance, biocompatibility, and tunable biodegradation of BT-PLGA transducer demonstrate its potential as a biodegradable power source for transient implantable devices.
ISSN:2169-3536