Ultraconformable Temporary Tattoo Electrodes for Electrophysiology

Abstract Electrically interfacing the skin for monitoring personal health condition is the basis of skin‐contact electrophysiology. In the clinical practice the use of stiff and bulky pregelled or dry electrodes, in contrast to the soft body tissues, imposes severe restrictions to user comfort and m...

Full description

Bibliographic Details
Main Authors: Laura M. Ferrari, Sudha Sudha, Sergio Tarantino, Roberto Esposti, Francesco Bolzoni, Paolo Cavallari, Christian Cipriani, Virgilio Mattoli, Francesco Greco
Format: Article
Language:English
Published: Wiley 2018-03-01
Series:Advanced Science
Subjects:
Online Access:https://doi.org/10.1002/advs.201700771
Description
Summary:Abstract Electrically interfacing the skin for monitoring personal health condition is the basis of skin‐contact electrophysiology. In the clinical practice the use of stiff and bulky pregelled or dry electrodes, in contrast to the soft body tissues, imposes severe restrictions to user comfort and mobility while limiting clinical applications. Here, in this work dry, unperceivable temporary tattoo electrodes are presented. Customized single or multielectrode arrays are readily fabricated by inkjet printing of conducting polymer onto commercial decal transfer paper, which allows for easy transfer on the user's skin. Conformal adhesion to the skin is provided thanks to their ultralow thickness (<1 µm). Tattoo electrode–skin contact impedance is characterized on short‐ (1 h) and long‐term (48 h) and compared with standard pregelled and dry electrodes. The viability in electrophysiology is validated by surface electromyography and electrocardiography recordings on various locations on limbs and face. A novel concept of tattoo as perforable skin‐contact electrode, through which hairs can grow, is demonstrated, thus permitting to envision very long‐term recordings on areas with high hair density. The proposed materials and patterning strategy make this technology amenable for large‐scale production of low‐cost sensing devices.
ISSN:2198-3844