Climate change threatens the woody plant taxonomic and functional diversities of the Restinga vegetation in Brazil

Climate change may impose extreme conditions which potentially affect species’ distributions, leading to spatio-temporal variation in biodiversity and ecosystem services patterns. Here we compared current climate conditions to future climate scenarios projected to 2050 to assess potential changes in...

Full description

Bibliographic Details
Main Authors: Gabriel M. Inague, Victor P. Zwiener, Márcia C.M. Marques
Format: Article
Language:English
Published: Elsevier 2021-01-01
Series:Perspectives in Ecology and Conservation
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2530064420300845
Description
Summary:Climate change may impose extreme conditions which potentially affect species’ distributions, leading to spatio-temporal variation in biodiversity and ecosystem services patterns. Here we compared current climate conditions to future climate scenarios projected to 2050 to assess potential changes in the spatio-temporal patterns of the taxonomic and functional diversities of the woody species of the Restinga vegetation in Brazil. We generated Ecological Niche Models (ENM) for 796 woody plant species from which we estimated the spatio-temporal changes of beta diversity components, the community-weighted means (CWM) of selected traits and functional diversity indices. The pessimistic scenario indicated an overall threefold increase in woody plant species loss compared to the optimistic scenario, whereas at regional scales, species loss may reach percentages as high as 19%. Conversely, beta diversity may increase in the future, in which the turnover component had a greater contribution than nestedness. The CWM projection emphasized contrasts among traits and ecoregions, with an increase in most analysed traits (stem wood density, seed length and fruit length) and a decrease in one of them (maximum plant height). Functional divergence and richness may decrease in future, while functional evenness may increase. Our study highlighted important potential changes in the distribution of biodiversity that could lead to biotic homogenization in the Restinga vegetation and calls for the inclusion of this marginalized vegetation in plans for mitigation and adaptation to climate change.
ISSN:2530-0644