Пряма і обернена задача визначення параметрів критеріальних рівнянь, отриманих на основі Пі – теореми теорії подібності
Визначено поняття систем, які можна фізично реалізувати, як таких систем, що представлені сукупністю фізичних елементів, структурно пов'язаних між собою, і які взаємодіють із зовнішнім середовищем. Для їх дослідження запропоновано використання критеріальних рівнянь, складених на основі Пі – тео...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Ivan Kozhedub Kharkiv National Air Force University
2020-03-01
|
Series: | Системи обробки інформації |
Subjects: | |
Online Access: | https://journal-hnups.com.ua/index.php/soi/article/view/172 |
Summary: | Визначено поняття систем, які можна фізично реалізувати, як таких систем, що представлені сукупністю фізичних елементів, структурно пов'язаних між собою, і які взаємодіють із зовнішнім середовищем. Для їх дослідження запропоновано використання критеріальних рівнянь, складених на основі Пі – теореми теорії подібності. Показано, що виходячи з вимог теорії подібності ці рівняння співпадають з функцією Кобба – Дугласа. Сформульовану пряму та обернену задачу визначення параметрів критеріальних рівнянь. Пряма задача визначення параметрів критеріальних рівнянь співпадає з задачею ідентифікації функції Кобба – Дугласа. В нашому випадку функцією та аргументами слугують відповідні безрозмірні величини – критерії подібності. Для розв’язання прямої задачі необхідно за даними експерименту з фізичною моделлю технічної системи визначити чисельні параметри цієї функції подібності. Для розв’язання цієї задачі використано алгоритм Марквардта. Пряма задача може бути використана в процесі аналізу технічної системи. Обернену задачу визначення параметрів критеріальних рівнянь можна розглядати як задачу синтезу технічної системи. Для її розв’язання запропоновано двохетапну процедуру. На першому етапі визначають необхідні значення критеріїв – аргументів, на другому визначають безпосередньо значення фізичних параметрів системи, необхідних для забезпечення чисельної величини обраного критерію подібності. Для розв’язання оберненої задачі використано метод дослідження простору параметрів. Наведено чисельний приклад застосування викладеної методики. |
---|---|
ISSN: | 1681-7710 2518-1696 |