Improved Diagnostic Multimodal Biomarkers for Alzheimer’s Disease and Mild Cognitive Impairment
The early diagnosis of Alzheimer’s disease (AD) and mild cognitive impairment (MCI) is very important for treatment research and patient care purposes. Few biomarkers are currently considered in clinical settings, and their use is still optional. The objective of this work was to determine whether m...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2015-01-01
|
Series: | BioMed Research International |
Online Access: | http://dx.doi.org/10.1155/2015/961314 |
id |
doaj-e46ad4f6b5044b18a069b763ffdebf71 |
---|---|
record_format |
Article |
spelling |
doaj-e46ad4f6b5044b18a069b763ffdebf712020-11-24T22:59:59ZengHindawi LimitedBioMed Research International2314-61332314-61412015-01-01201510.1155/2015/961314961314Improved Diagnostic Multimodal Biomarkers for Alzheimer’s Disease and Mild Cognitive ImpairmentAntonio Martínez-Torteya0Víctor Treviño1José G. Tamez-Peña2Cátedra de Bioinformática, Tecnológico de Monterrey, 64849 Monterrey, NL, MexicoCátedra de Bioinformática, Tecnológico de Monterrey, 64849 Monterrey, NL, MexicoCátedra de Bioinformática, Tecnológico de Monterrey, 64849 Monterrey, NL, MexicoThe early diagnosis of Alzheimer’s disease (AD) and mild cognitive impairment (MCI) is very important for treatment research and patient care purposes. Few biomarkers are currently considered in clinical settings, and their use is still optional. The objective of this work was to determine whether multimodal and nonpreviously AD associated features could improve the classification accuracy between AD, MCI, and healthy controls, which may impact future AD biomarkers. For this, Alzheimer’s Disease Neuroimaging Initiative database was mined for case-control candidates. At least 652 baseline features extracted from MRI and PET analyses, biological samples, and clinical data up to February 2014 were used. A feature selection methodology that includes a genetic algorithm search coupled to a logistic regression classifier and forward and backward selection strategies was used to explore combinations of features. This generated diagnostic models with sizes ranging from 3 to 8, including well documented AD biomarkers, as well as unexplored image, biochemical, and clinical features. Accuracies of 0.85, 0.79, and 0.80 were achieved for HC-AD, HC-MCI, and MCI-AD classifications, respectively, when evaluated using a blind test set. In conclusion, a set of features provided additional and independent information to well-established AD biomarkers, aiding in the classification of MCI and AD.http://dx.doi.org/10.1155/2015/961314 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Antonio Martínez-Torteya Víctor Treviño José G. Tamez-Peña |
spellingShingle |
Antonio Martínez-Torteya Víctor Treviño José G. Tamez-Peña Improved Diagnostic Multimodal Biomarkers for Alzheimer’s Disease and Mild Cognitive Impairment BioMed Research International |
author_facet |
Antonio Martínez-Torteya Víctor Treviño José G. Tamez-Peña |
author_sort |
Antonio Martínez-Torteya |
title |
Improved Diagnostic Multimodal Biomarkers for Alzheimer’s Disease and Mild Cognitive Impairment |
title_short |
Improved Diagnostic Multimodal Biomarkers for Alzheimer’s Disease and Mild Cognitive Impairment |
title_full |
Improved Diagnostic Multimodal Biomarkers for Alzheimer’s Disease and Mild Cognitive Impairment |
title_fullStr |
Improved Diagnostic Multimodal Biomarkers for Alzheimer’s Disease and Mild Cognitive Impairment |
title_full_unstemmed |
Improved Diagnostic Multimodal Biomarkers for Alzheimer’s Disease and Mild Cognitive Impairment |
title_sort |
improved diagnostic multimodal biomarkers for alzheimer’s disease and mild cognitive impairment |
publisher |
Hindawi Limited |
series |
BioMed Research International |
issn |
2314-6133 2314-6141 |
publishDate |
2015-01-01 |
description |
The early diagnosis of Alzheimer’s disease (AD) and mild cognitive impairment (MCI) is very important for treatment research and patient care purposes. Few biomarkers are currently considered in clinical settings, and their use is still optional. The objective of this work was to determine whether multimodal and nonpreviously AD associated features could improve the classification accuracy between AD, MCI, and healthy controls, which may impact future AD biomarkers. For this, Alzheimer’s Disease Neuroimaging Initiative database was mined for case-control candidates. At least 652 baseline features extracted from MRI and PET analyses, biological samples, and clinical data up to February 2014 were used. A feature selection methodology that includes a genetic algorithm search coupled to a logistic regression classifier and forward and backward selection strategies was used to explore combinations of features. This generated diagnostic models with sizes ranging from 3 to 8, including well documented AD biomarkers, as well as unexplored image, biochemical, and clinical features. Accuracies of 0.85, 0.79, and 0.80 were achieved for HC-AD, HC-MCI, and MCI-AD classifications, respectively, when evaluated using a blind test set. In conclusion, a set of features provided additional and independent information to well-established AD biomarkers, aiding in the classification of MCI and AD. |
url |
http://dx.doi.org/10.1155/2015/961314 |
work_keys_str_mv |
AT antoniomartineztorteya improveddiagnosticmultimodalbiomarkersforalzheimersdiseaseandmildcognitiveimpairment AT victortrevino improveddiagnosticmultimodalbiomarkersforalzheimersdiseaseandmildcognitiveimpairment AT josegtamezpena improveddiagnosticmultimodalbiomarkersforalzheimersdiseaseandmildcognitiveimpairment |
_version_ |
1725643026814992384 |