Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets

Visualisation tools that use dimensionality reduction, such as t-SNE, provide poor visualisation on large data sets of millions of observations. Here the authors present opt-SNE, that automatically finds data set-tailored parameters for t-SNE to optimise visualisation and improve analysis.

Bibliographic Details
Main Authors: Anna C. Belkina, Christopher O. Ciccolella, Rina Anno, Richard Halpert, Josef Spidlen, Jennifer E. Snyder-Cappione
Format: Article
Language:English
Published: Nature Publishing Group 2019-11-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-019-13055-y
Description
Summary:Visualisation tools that use dimensionality reduction, such as t-SNE, provide poor visualisation on large data sets of millions of observations. Here the authors present opt-SNE, that automatically finds data set-tailored parameters for t-SNE to optimise visualisation and improve analysis.
ISSN:2041-1723