Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets
Visualisation tools that use dimensionality reduction, such as t-SNE, provide poor visualisation on large data sets of millions of observations. Here the authors present opt-SNE, that automatically finds data set-tailored parameters for t-SNE to optimise visualisation and improve analysis.
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2019-11-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-019-13055-y |
Summary: | Visualisation tools that use dimensionality reduction, such as t-SNE, provide poor visualisation on large data sets of millions of observations. Here the authors present opt-SNE, that automatically finds data set-tailored parameters for t-SNE to optimise visualisation and improve analysis. |
---|---|
ISSN: | 2041-1723 |