A Study on Lap Joint Welding of Thin Plate ASTM F1684 Using Fiber Laser Welding

The International Maritime Organization (IMO) has developed stricter regulations on emission standards for sulfur oxides, etc., and the demand for Liquefied Natural Gas (LNG) is increasing as an alternative to satisfy these standards. This study relates to fiber laser welding, an approach which offe...

Full description

Bibliographic Details
Main Authors: Jaewoong Kim, Younghyun Kim, Jisun Kim, Yongtai Kim, Dongwoo Kim, Sungwook Kang, Changmin Pyo
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Processes
Subjects:
Online Access:https://www.mdpi.com/2227-9717/9/3/428
Description
Summary:The International Maritime Organization (IMO) has developed stricter regulations on emission standards for sulfur oxides, etc., and the demand for Liquefied Natural Gas (LNG) is increasing as an alternative to satisfy these standards. This study relates to fiber laser welding, an approach which offers high-speed welding and low welding deformation for ASTM F1684, which has a low coefficient of thermal expansion (CTE) even in a cryogenic environment. In this study, through three preliminary experiments using 0.25 mm thick Invar, the conditions required to secure sufficient penetration depth and back bead were identified. Through the cross-sectional observation analysis, the welding conditions without defects were identified and the trend of penetration shape according to increasing welding speed was identified. Following a lap joint laser welding experiment under the secured conditions, the mechanical properties were evaluated through the shear strength test and the heat influence range of a fiber laser was identified through the temperature measurement of a welding part. As a result, it was confirmed that the shear strength of the lap joint laser welding part was 86.8% that of the base metal.
ISSN:2227-9717