Summary: | Weakly coupled ferroelectric/dielectric superlattice thin-film heterostructures exhibit complex nanoscale polarization configurations that arise from a balance of competing electrostatic, elastic, and domain-wall contributions to the free energy. A key feature of these configurations is that the polarization can locally have a significant component that is along the thin-film surface normal direction with an overall configuration maintaining zero net in-plane polarization. PbTiO_{3}/SrTiO_{3} thin-film superlattice heterostructures on a conducting SrRuO_{3} bottom electrode on SrTiO_{3} have a room-temperature stripe nanodomain pattern with a nanometer-scale lateral period. Ultrafast time-resolved x-ray free electron laser diffraction and scattering experiments reveal that above-bandgap optical pulses induce propagating acoustic pulses and a perturbation of the domain diffuse scattering intensity arising from the nanoscale stripe domain configuration. With 400-nm optical excitation, two separate acoustic pulses are observed: a high-amplitude pulse resulting from strong optical absorption in the bottom electrode and a weaker pulse arising from the depolarization-field-screening effect due to absorption directly within the superlattice. The picosecond scale variation of the nanodomain diffuse scattering intensity is consistent with a larger polarization change than would be expected due to the polarization-tetragonality coupling of uniformly polarized ferroelectrics. The polarization change is consistent, instead, with polarization rotation facilitated by the reorientation of the in-plane component of the polarization at the domain boundaries of the striped polarization structure. The complex steady-state configuration within these ferroelectric heterostructures leads to ultrafast polarization rotation phenomena that have previously been available only through the selection of bulk crystal composition.
|