Minocycline-loaded PLGA electrospun membrane prevents alveolar bone loss in experimental peridontitis

Minocycline (MINO) is a tetracycline antibiotic effective against most of the bacteria microorganisms related to periodontal disease. Additionally, MINO promotes bone in vitro and in vivo. The objective of the present study was to establish the protocol for the preparation of MINO-loaded poly (lacti...

Full description

Bibliographic Details
Main Authors: Yihui Ma, Jinlin Song, Huthayfa N. S. Almassri, Dan Zhang, Ting Zhang, Yuting Cheng, Xiaohong Wu
Format: Article
Language:English
Published: Taylor & Francis Group 2020-01-01
Series:Drug Delivery
Subjects:
Online Access:http://dx.doi.org/10.1080/10717544.2019.1709921
Description
Summary:Minocycline (MINO) is a tetracycline antibiotic effective against most of the bacteria microorganisms related to periodontal disease. Additionally, MINO promotes bone in vitro and in vivo. The objective of the present study was to establish the protocol for the preparation of MINO-loaded poly (lactic-co-glycolic acid) (MINO-PLGA) electrospun membranes and to evaluate their effect on osteogenesis in vitro and in a rat model of periodontitis. The characterization of MINO-PLGA electrospun membranes was assessed by scanning electron microscopy, laser scanning confocal microscopy, and contact angle measurement. The drug release study showed a sustained diffusion of MINO from electrospun membranes over a period of 40 d. The MINO-PLGA membranes containing 2% of the drug exhibited better support of osteoblast proliferation and adhesion and was subsequently used in vivo in an experimental periodontitis model. Its therapeutic potential was evaluated by the measurement of alveolar bone loss (ABL), bone volume analysis, histological analysis, and immunohistochemistry. MINO-PLGA membrane increased alveolar crest height in the periodontitis model, inhibited the expression of the ligand of the receptor activator for nuclear factor-κB (RANKL), and promoted the expression of its inhibitor, osteoprotegerin. The study demonstrated that MINO-PLGA electrospun membranes may be applied to stimulate bone regeneration in periodontitis.
ISSN:1071-7544
1521-0464