Study on Local to Global Radiometric Balance for Remotely Sensed Imagery

Due to the difference of factors, such as lighting conditions, shooting environments, and time, there is compound brightness difference between adjacent images, which includes local brightness difference and radiometric difference. This paper proposed a method to eliminate the compound brightness di...

Full description

Bibliographic Details
Main Authors: Xiaofan Liu, Guoqing Zhou, Wuming Zhang, Shezhou Luo
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/13/11/2068
Description
Summary:Due to the difference of factors, such as lighting conditions, shooting environments, and time, there is compound brightness difference between adjacent images, which includes local brightness difference and radiometric difference. This paper proposed a method to eliminate the compound brightness difference of adjacent images after mosaicking, named local to global radiometric balance. It includes the brightness compensation model and brightness approach model. Firstly, the weighted average value of each row and column of image are calculated to express the brightness change; secondly, according to weighted average value, the brightness compensation model is built; thirdly, combined with the blocking method, the brightness compensation model is applied to image. Based on the value after above process, the brightness approach model is established to make the gray value of adjacent images approach to the mosaic line. In the paper, the standard deviation, MSE (mean square error) and mean value are used as the measure indices of the effect of brightness balance. The three groups of experimental results show that compared with the brightness stretch method, the histogram equalization method and the radiometric balance method, the local to global radiometric balance method not only realizes compound brightness balance, but also has better visual effects than others.
ISSN:2072-4292