Computing Degree Based Topological Properties of Third Type of Hex-Derived Networks
In chemical graph theory, a topological index is a numerical representation of a chemical network, while a topological descriptor correlates certain physicochemical characteristics of underlying chemical compounds besides its chemical representation. The graph plays a vital role in modeling and desi...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-04-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/7/4/368 |
id |
doaj-e61d9e851458431b9eeeb031e7a39176 |
---|---|
record_format |
Article |
spelling |
doaj-e61d9e851458431b9eeeb031e7a391762020-11-24T21:44:53ZengMDPI AGMathematics2227-73902019-04-017436810.3390/math7040368math7040368Computing Degree Based Topological Properties of Third Type of Hex-Derived NetworksChang-Cheng Wei0Haidar Ali1Muhammad Ahsan Binyamin2Muhammad Nawaz Naeem3Jia-Bao Liu4Department of Mathematics and Computer Science, Anhui Tongling University, TongLing 244061, ChinaDepartment of Mathematics, Government College University Faisalabad (GCUF), Faisalabad 38023, PakistanDepartment of Mathematics, Government College University Faisalabad (GCUF), Faisalabad 38023, PakistanDepartment of Mathematics, Government College University Faisalabad (GCUF), Faisalabad 38023, PakistanSchool of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, ChinaIn chemical graph theory, a topological index is a numerical representation of a chemical network, while a topological descriptor correlates certain physicochemical characteristics of underlying chemical compounds besides its chemical representation. The graph plays a vital role in modeling and designing any chemical network. Simonraj et al. derived a new type of graphs, which is named a third type of hex-derived networks. In our work, we discuss the third type of hex-derived networks <inline-formula> <math display="inline"> <semantics> <mrow> <mi>H</mi> <mi>D</mi> <mi>N</mi> <mn>3</mn> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>T</mi> <mi>H</mi> <mi>D</mi> <mi>N</mi> <mn>3</mn> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>R</mi> <mi>H</mi> <mi>D</mi> <mi>N</mi> <mn>3</mn> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>C</mi> <mi>H</mi> <mi>D</mi> <mi>N</mi> <mn>3</mn> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula>, and compute exact results for topological indices which are based on degrees of end vertices.https://www.mdpi.com/2227-7390/7/4/368general randić indexHarmonic indexaugmented Zagreb indexatom–bond connectivity (<i>ABC</i>) indexgeometric–arithmetic (<i>GA</i>) indexthird type of hex-derived networks<i>HDN<i>3</i>(r)</i><i>THDN<i>3</i>(r)</i><i>RHDN<i>3</i>(r)</i><i>CHDN<i>3</i>(r)</i> |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Chang-Cheng Wei Haidar Ali Muhammad Ahsan Binyamin Muhammad Nawaz Naeem Jia-Bao Liu |
spellingShingle |
Chang-Cheng Wei Haidar Ali Muhammad Ahsan Binyamin Muhammad Nawaz Naeem Jia-Bao Liu Computing Degree Based Topological Properties of Third Type of Hex-Derived Networks Mathematics general randić index Harmonic index augmented Zagreb index atom–bond connectivity (<i>ABC</i>) index geometric–arithmetic (<i>GA</i>) index third type of hex-derived networks <i>HDN<i>3</i>(r)</i> <i>THDN<i>3</i>(r)</i> <i>RHDN<i>3</i>(r)</i> <i>CHDN<i>3</i>(r)</i> |
author_facet |
Chang-Cheng Wei Haidar Ali Muhammad Ahsan Binyamin Muhammad Nawaz Naeem Jia-Bao Liu |
author_sort |
Chang-Cheng Wei |
title |
Computing Degree Based Topological Properties of Third Type of Hex-Derived Networks |
title_short |
Computing Degree Based Topological Properties of Third Type of Hex-Derived Networks |
title_full |
Computing Degree Based Topological Properties of Third Type of Hex-Derived Networks |
title_fullStr |
Computing Degree Based Topological Properties of Third Type of Hex-Derived Networks |
title_full_unstemmed |
Computing Degree Based Topological Properties of Third Type of Hex-Derived Networks |
title_sort |
computing degree based topological properties of third type of hex-derived networks |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2019-04-01 |
description |
In chemical graph theory, a topological index is a numerical representation of a chemical network, while a topological descriptor correlates certain physicochemical characteristics of underlying chemical compounds besides its chemical representation. The graph plays a vital role in modeling and designing any chemical network. Simonraj et al. derived a new type of graphs, which is named a third type of hex-derived networks. In our work, we discuss the third type of hex-derived networks <inline-formula> <math display="inline"> <semantics> <mrow> <mi>H</mi> <mi>D</mi> <mi>N</mi> <mn>3</mn> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>T</mi> <mi>H</mi> <mi>D</mi> <mi>N</mi> <mn>3</mn> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>R</mi> <mi>H</mi> <mi>D</mi> <mi>N</mi> <mn>3</mn> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>C</mi> <mi>H</mi> <mi>D</mi> <mi>N</mi> <mn>3</mn> <mo stretchy="false">(</mo> <mi>r</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula>, and compute exact results for topological indices which are based on degrees of end vertices. |
topic |
general randić index Harmonic index augmented Zagreb index atom–bond connectivity (<i>ABC</i>) index geometric–arithmetic (<i>GA</i>) index third type of hex-derived networks <i>HDN<i>3</i>(r)</i> <i>THDN<i>3</i>(r)</i> <i>RHDN<i>3</i>(r)</i> <i>CHDN<i>3</i>(r)</i> |
url |
https://www.mdpi.com/2227-7390/7/4/368 |
work_keys_str_mv |
AT changchengwei computingdegreebasedtopologicalpropertiesofthirdtypeofhexderivednetworks AT haidarali computingdegreebasedtopologicalpropertiesofthirdtypeofhexderivednetworks AT muhammadahsanbinyamin computingdegreebasedtopologicalpropertiesofthirdtypeofhexderivednetworks AT muhammadnawaznaeem computingdegreebasedtopologicalpropertiesofthirdtypeofhexderivednetworks AT jiabaoliu computingdegreebasedtopologicalpropertiesofthirdtypeofhexderivednetworks |
_version_ |
1725908221321805824 |