Potential of Deficit and Supplemental Irrigation under Climate Variability in Northern Togo, West Africa
In the context of a growing population in West Africa and frequent yield losses due to erratic rainfall, it is necessary to improve stability and productivity of agricultural production systems, e.g., by introducing and assessing the potential of alternative irrigation strategies which may be applic...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-12-01
|
Series: | Water |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4441/10/12/1803 |
id |
doaj-e648214ee25e4f698cc3f22777cc613c |
---|---|
record_format |
Article |
spelling |
doaj-e648214ee25e4f698cc3f22777cc613c2020-11-24T21:22:12ZengMDPI AGWater2073-44412018-12-011012180310.3390/w10121803w10121803Potential of Deficit and Supplemental Irrigation under Climate Variability in Northern Togo, West AfricaAgossou Gadédjisso-Tossou0Tamara Avellán1Niels Schütze2United Nations University Institute for Integrated Management of Material Fluxes and of Resources (UNU-FLORES), Ammonstrasse 74, 01067 Dresden, GermanyUnited Nations University Institute for Integrated Management of Material Fluxes and of Resources (UNU-FLORES), Ammonstrasse 74, 01067 Dresden, GermanyInstitute of Hydrology and Meteorology, Technische Universität Dresden, 01069 Dresden, GermanyIn the context of a growing population in West Africa and frequent yield losses due to erratic rainfall, it is necessary to improve stability and productivity of agricultural production systems, e.g., by introducing and assessing the potential of alternative irrigation strategies which may be applicable in this region. For this purpose, five irrigation management strategies, ranging from no irrigation (NI) to controlled deficit irrigation (CDI) and full irrigation (FI), were evaluated concerning their impact on the inter-seasonal variability of the expected yields and improvements of the yield potential. The study was conducted on a maize crop (<i>Zea mays</i> L.) at a representative site in northern Togo with a hot semi-arid climate and pronounced dry and wet rainfall seasons. The OCCASION (Optimal Climate Change Adaption Strategies in Irrigation) framework was adapted and applied. It consists of: (i) a weather generator for simulating long climate time series; (ii) the AquaCrop model, which was used to simulate the irrigation system during the growing season and the yield response of maize to the considered irrigation management strategies; and (iii) a problem-specific algorithm for optimal irrigation scheduling with limited water supply. We found high variability in rainfall during the wet season which leads to considerable variability in the expected yield for rainfed conditions (NI). This variability was significantly reduced when supplemental irrigation management strategies (CDI or FI) requiring a reasonably low water demand of about 150 mm were introduced. For the dry season, it was shown that both irrigation management strategies (CDI and FI) would increase yield potential for the local variety TZEE-W up to 4.84 Mg/ha and decrease the variability of the expected yield at the same time. However, even with CDI management, more than 400 mm of water is required if irrigation would be introduced during the dry season in northern Togo. Substantial rainwater harvesting and irrigation infrastructures would be needed to achieve that.https://www.mdpi.com/2073-4441/10/12/1803AquaCrop modelmaizedeficit irrigationcrop-water production functionWest Africa |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Agossou Gadédjisso-Tossou Tamara Avellán Niels Schütze |
spellingShingle |
Agossou Gadédjisso-Tossou Tamara Avellán Niels Schütze Potential of Deficit and Supplemental Irrigation under Climate Variability in Northern Togo, West Africa Water AquaCrop model maize deficit irrigation crop-water production function West Africa |
author_facet |
Agossou Gadédjisso-Tossou Tamara Avellán Niels Schütze |
author_sort |
Agossou Gadédjisso-Tossou |
title |
Potential of Deficit and Supplemental Irrigation under Climate Variability in Northern Togo, West Africa |
title_short |
Potential of Deficit and Supplemental Irrigation under Climate Variability in Northern Togo, West Africa |
title_full |
Potential of Deficit and Supplemental Irrigation under Climate Variability in Northern Togo, West Africa |
title_fullStr |
Potential of Deficit and Supplemental Irrigation under Climate Variability in Northern Togo, West Africa |
title_full_unstemmed |
Potential of Deficit and Supplemental Irrigation under Climate Variability in Northern Togo, West Africa |
title_sort |
potential of deficit and supplemental irrigation under climate variability in northern togo, west africa |
publisher |
MDPI AG |
series |
Water |
issn |
2073-4441 |
publishDate |
2018-12-01 |
description |
In the context of a growing population in West Africa and frequent yield losses due to erratic rainfall, it is necessary to improve stability and productivity of agricultural production systems, e.g., by introducing and assessing the potential of alternative irrigation strategies which may be applicable in this region. For this purpose, five irrigation management strategies, ranging from no irrigation (NI) to controlled deficit irrigation (CDI) and full irrigation (FI), were evaluated concerning their impact on the inter-seasonal variability of the expected yields and improvements of the yield potential. The study was conducted on a maize crop (<i>Zea mays</i> L.) at a representative site in northern Togo with a hot semi-arid climate and pronounced dry and wet rainfall seasons. The OCCASION (Optimal Climate Change Adaption Strategies in Irrigation) framework was adapted and applied. It consists of: (i) a weather generator for simulating long climate time series; (ii) the AquaCrop model, which was used to simulate the irrigation system during the growing season and the yield response of maize to the considered irrigation management strategies; and (iii) a problem-specific algorithm for optimal irrigation scheduling with limited water supply. We found high variability in rainfall during the wet season which leads to considerable variability in the expected yield for rainfed conditions (NI). This variability was significantly reduced when supplemental irrigation management strategies (CDI or FI) requiring a reasonably low water demand of about 150 mm were introduced. For the dry season, it was shown that both irrigation management strategies (CDI and FI) would increase yield potential for the local variety TZEE-W up to 4.84 Mg/ha and decrease the variability of the expected yield at the same time. However, even with CDI management, more than 400 mm of water is required if irrigation would be introduced during the dry season in northern Togo. Substantial rainwater harvesting and irrigation infrastructures would be needed to achieve that. |
topic |
AquaCrop model maize deficit irrigation crop-water production function West Africa |
url |
https://www.mdpi.com/2073-4441/10/12/1803 |
work_keys_str_mv |
AT agossougadedjissotossou potentialofdeficitandsupplementalirrigationunderclimatevariabilityinnortherntogowestafrica AT tamaraavellan potentialofdeficitandsupplementalirrigationunderclimatevariabilityinnortherntogowestafrica AT nielsschutze potentialofdeficitandsupplementalirrigationunderclimatevariabilityinnortherntogowestafrica |
_version_ |
1725996925201678336 |