Endpoint regularity of discrete multilinear fractional nontangential maximal functions

Abstract Given m≥1 $m\geq 1$, 0≤λ≤1 $0\leq \lambda \leq 1$, and a discrete vector-valued function f→=(f1,…,fm) $\vec{f}=(f_{1},\ldots,f_{m})$ with each fj:Zd→R $f_{j}:\mathbb{Z} ^{d}\rightarrow \mathbb{R}$, we consider the discrete multilinear fractional nontangential maximal operator Mα,Bλ(f→)(n→)=...

Full description

Bibliographic Details
Main Author: Daiqing Zhang
Format: Article
Language:English
Published: SpringerOpen 2019-09-01
Series:Advances in Difference Equations
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13662-019-2257-3
id doaj-e674b58cd7d048e4986e76c8988e0cf1
record_format Article
spelling doaj-e674b58cd7d048e4986e76c8988e0cf12020-11-25T03:47:25ZengSpringerOpenAdvances in Difference Equations1687-18472019-09-012019111810.1186/s13662-019-2257-3Endpoint regularity of discrete multilinear fractional nontangential maximal functionsDaiqing Zhang0College of Mathematics and Physics, Fujian University of TechnologyAbstract Given m≥1 $m\geq 1$, 0≤λ≤1 $0\leq \lambda \leq 1$, and a discrete vector-valued function f→=(f1,…,fm) $\vec{f}=(f_{1},\ldots,f_{m})$ with each fj:Zd→R $f_{j}:\mathbb{Z} ^{d}\rightarrow \mathbb{R}$, we consider the discrete multilinear fractional nontangential maximal operator Mα,Bλ(f→)(n→)=supr>0,x→∈Rd|n→−x→|≤λr1N(Br(x→))m−αd∏j=1m∑k→∈Br(x→)∩Zd|fj(k→)|, $$ \mathrm{M}_{\alpha,\mathcal{B}}^{\lambda }(\vec{f}) (\vec{n})=\mathop{\sup_{r>0, \vec{x}\in \mathbb{R}^{d}}}_{ \vert \vec{n}-\vec{x} \vert \leq \lambda r}\frac{1}{N(B _{r}(\vec{x}))^{m-\frac{\alpha }{d}}} \prod _{j=1}^{m}\sum_{\vec{k}\in B_{r}(\vec{x})\cap \mathbb{Z}^{d}} \bigl\vert f_{j}(\vec{k}) \bigr\vert , $$ where B $\mathcal{B}$ is the collection of all open balls B⊂Rd $B\subset \mathbb{R}^{d}$, Br(x→) $B_{r}(\vec{x})$ is the open ball in Rd $\mathbb{R}^{d}$ centered at x→∈Rd $\vec{x}\in \mathbb{R}^{d}$ with radius r, and N(Br(x→)) $N(B_{r}(\vec{x}))$ is the number of lattice points in the set Br(x→) $B_{r}(\vec{x})$. We show that the operator f→↦|∇Mα,Bλ(f→)| $\vec{f}\mapsto |\nabla \mathrm{M}_{\alpha, \mathcal{B}}^{\lambda }(\vec{f})|$ is bounded and continuous from ℓ1(Zd)×ℓ1(Zd)×⋯×ℓ1(Zd) $\ell ^{1}(\mathbb{Z}^{d})\times \ell ^{1}(\mathbb{Z} ^{d})\times \cdots \times \ell ^{1}(\mathbb{Z}^{d})$ to ℓq(Zd) $\ell ^{q}(\mathbb{Z} ^{d})$ if 0≤α<md $0\leq \alpha < md$ and q≥1 $q\geq 1$ such that q>dmd−α+1 $q>\frac{d}{md- \alpha +1}$. We also prove that the same result also holds for the discrete multilinear fractional nontangential maximal operators associated with cubes. These results we obtained represent significant and natural extensions of what was known previously.http://link.springer.com/article/10.1186/s13662-019-2257-3Discrete multilinear fractional nontangential maximal operatorDiscrete multilinear fractional maximal operatorBounded variationContinuity
collection DOAJ
language English
format Article
sources DOAJ
author Daiqing Zhang
spellingShingle Daiqing Zhang
Endpoint regularity of discrete multilinear fractional nontangential maximal functions
Advances in Difference Equations
Discrete multilinear fractional nontangential maximal operator
Discrete multilinear fractional maximal operator
Bounded variation
Continuity
author_facet Daiqing Zhang
author_sort Daiqing Zhang
title Endpoint regularity of discrete multilinear fractional nontangential maximal functions
title_short Endpoint regularity of discrete multilinear fractional nontangential maximal functions
title_full Endpoint regularity of discrete multilinear fractional nontangential maximal functions
title_fullStr Endpoint regularity of discrete multilinear fractional nontangential maximal functions
title_full_unstemmed Endpoint regularity of discrete multilinear fractional nontangential maximal functions
title_sort endpoint regularity of discrete multilinear fractional nontangential maximal functions
publisher SpringerOpen
series Advances in Difference Equations
issn 1687-1847
publishDate 2019-09-01
description Abstract Given m≥1 $m\geq 1$, 0≤λ≤1 $0\leq \lambda \leq 1$, and a discrete vector-valued function f→=(f1,…,fm) $\vec{f}=(f_{1},\ldots,f_{m})$ with each fj:Zd→R $f_{j}:\mathbb{Z} ^{d}\rightarrow \mathbb{R}$, we consider the discrete multilinear fractional nontangential maximal operator Mα,Bλ(f→)(n→)=supr>0,x→∈Rd|n→−x→|≤λr1N(Br(x→))m−αd∏j=1m∑k→∈Br(x→)∩Zd|fj(k→)|, $$ \mathrm{M}_{\alpha,\mathcal{B}}^{\lambda }(\vec{f}) (\vec{n})=\mathop{\sup_{r>0, \vec{x}\in \mathbb{R}^{d}}}_{ \vert \vec{n}-\vec{x} \vert \leq \lambda r}\frac{1}{N(B _{r}(\vec{x}))^{m-\frac{\alpha }{d}}} \prod _{j=1}^{m}\sum_{\vec{k}\in B_{r}(\vec{x})\cap \mathbb{Z}^{d}} \bigl\vert f_{j}(\vec{k}) \bigr\vert , $$ where B $\mathcal{B}$ is the collection of all open balls B⊂Rd $B\subset \mathbb{R}^{d}$, Br(x→) $B_{r}(\vec{x})$ is the open ball in Rd $\mathbb{R}^{d}$ centered at x→∈Rd $\vec{x}\in \mathbb{R}^{d}$ with radius r, and N(Br(x→)) $N(B_{r}(\vec{x}))$ is the number of lattice points in the set Br(x→) $B_{r}(\vec{x})$. We show that the operator f→↦|∇Mα,Bλ(f→)| $\vec{f}\mapsto |\nabla \mathrm{M}_{\alpha, \mathcal{B}}^{\lambda }(\vec{f})|$ is bounded and continuous from ℓ1(Zd)×ℓ1(Zd)×⋯×ℓ1(Zd) $\ell ^{1}(\mathbb{Z}^{d})\times \ell ^{1}(\mathbb{Z} ^{d})\times \cdots \times \ell ^{1}(\mathbb{Z}^{d})$ to ℓq(Zd) $\ell ^{q}(\mathbb{Z} ^{d})$ if 0≤α<md $0\leq \alpha < md$ and q≥1 $q\geq 1$ such that q>dmd−α+1 $q>\frac{d}{md- \alpha +1}$. We also prove that the same result also holds for the discrete multilinear fractional nontangential maximal operators associated with cubes. These results we obtained represent significant and natural extensions of what was known previously.
topic Discrete multilinear fractional nontangential maximal operator
Discrete multilinear fractional maximal operator
Bounded variation
Continuity
url http://link.springer.com/article/10.1186/s13662-019-2257-3
work_keys_str_mv AT daiqingzhang endpointregularityofdiscretemultilinearfractionalnontangentialmaximalfunctions
_version_ 1724501869961674752