Ultrasound and ionic liquid-enhanced extractive desulfurization of diesel

The current desulfurization technology, hydrodesulfurization (HDS), is energy intensive, uses large quantities of hydrogen, and is ineffective at removing some sulfur compounds. Ionic liquids have been recently shown to perform well as extraction solvents for the removal of sulfur from diesel. Howev...

Full description

Bibliographic Details
Main Authors: Zuraiqi Karma, Nancarrow Paul, Ahmed Hussain
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:MATEC Web of Conferences
Subjects:
Online Access:https://doi.org/10.1051/matecconf/201817103003
Description
Summary:The current desulfurization technology, hydrodesulfurization (HDS), is energy intensive, uses large quantities of hydrogen, and is ineffective at removing some sulfur compounds. Ionic liquids have been recently shown to perform well as extraction solvents for the removal of sulfur from diesel. However, a major limitation towards their industrial use is the low mass transfer rates that result from their relatively high viscosities. This study investigates the use of ultrasound to overcome this problem. The ionic liquid, 1-ethyl-3-methylimidazolium acetate ([C2mim][CH3COO]), was used to desulfurize model diesel consisting of dibenzothiophene in hexadecane, in the absence and presence of ultrasound. It was found that sonification can greatly enhance the rate of mass transfer of DBT from diesel to the IL, resulting in a 57% sulfur removal for a 75% decrease in extraction time for batch studies, which results in a reduction in the number of equilibrium stages necessary for a continuous extraction process.
ISSN:2261-236X