Hydroxychloroquine partially prevents endothelial dysfunction induced by anti-beta-2-GPI antibodies in an in vivo mouse model of antiphospholipid syndrome.

BACKGROUND:Antiphospholipid syndrome is associated with endothelial dysfunction, which leads to thrombosis and early atheroma. Given that hydroxychloroquine has anti-thrombotic properties in lupus, we hypothesized that it could reduce endothelial dysfunction in an animal model of antiphospholipid sy...

Full description

Bibliographic Details
Main Authors: Geoffrey Urbanski, Antoine Caillon, Caroline Poli, Gilles Kauffenstein, Marc-Antoine Begorre, Laurent Loufrani, Daniel Henrion, Cristina Belizna
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2018-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC6219787?pdf=render
Description
Summary:BACKGROUND:Antiphospholipid syndrome is associated with endothelial dysfunction, which leads to thrombosis and early atheroma. Given that hydroxychloroquine has anti-thrombotic properties in lupus, we hypothesized that it could reduce endothelial dysfunction in an animal model of antiphospholipid syndrome. We evaluated the effect of hydroxychloroquine in preventing endothelial dysfunction in a mouse model of antiphospholipid syndrome. METHODS:Antiphospholipid syndrome was induced by an injection of monoclonal anti-beta-2-GPI antibodies. Vascular reactivity was evaluated in mesenteric resistance arteries isolated from mice 3 weeks (APL3W) after receiving a single injection of anti-beta-2-GPI antibodies and after 3 weeks of daily oral hydroxychloroquine treatment (HCQ3W) compared to control mice (CT3W). We evaluated endothelial dysfunction by measuring acetylcholine-mediated vasodilation. A pharmacological approach was used to evaluate NO synthase uncoupling (tetrahydrobiopterin) and the generation of reactive oxygen species (Tempol). RESULTS:Impaired acetylcholine-mediated dilation was evidenced in mice 3 weeks after anti-beta-2-GPI antibodies injection compared to CT3W, by reduced maximal dilation (p<0.0001) and sensitivity (pKd) (p = 0.01) to acetylcholine. Hydroxychloroquine improved acetylcholine-dependent dilation, on pKd (p = 0.02) but not maximal capacity compared to untreated mice. The addition of tetrahydrobiopterin (p = 0.02) and/or Tempol (p = 0.0008) improved acetylcholine-mediated dilation in APL3W but not in HCQ3W. CONCLUSIONS:We demonstrated that endothelial dysfunction in mouse resistance arteries persisted at 3 weeks after a single injection of monoclonal anti-beta-2-GPI antibodies, and that hydroxychloroquine improved endothelium-dependent dilation at 3 weeks, through improvement of NO synthase coupling and oxidative stress reduction.
ISSN:1932-6203