Uniqueness of positive solutions for a class of ODE's with Dirichlet boundary conditions

We study the uniqueness of positive solutions of the boundary-value problem $$displaylines{ u''+a(t)u'+f(t,u)=0 ,quad tin (0,b)cr u(0)=0,u(b)=0,, }$$ where 0 less than $b$ less than $infty$, $ain C^1[0,infty)$ and $fin C^1([0,infty)imes [0, infty), [0, infty))$ satisfy suitable cond...

Full description

Bibliographic Details
Main Authors: Yulian An, Ruyun Ma
Format: Article
Language:English
Published: Texas State University 2004-11-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2004/142/abstr.html
id doaj-e6bd6507fdcf4735ab53c6eb5ae73b85
record_format Article
spelling doaj-e6bd6507fdcf4735ab53c6eb5ae73b852020-11-24T21:51:00ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912004-11-01200414219Uniqueness of positive solutions for a class of ODE's with Dirichlet boundary conditionsYulian AnRuyun MaWe study the uniqueness of positive solutions of the boundary-value problem $$displaylines{ u''+a(t)u'+f(t,u)=0 ,quad tin (0,b)cr u(0)=0,u(b)=0,, }$$ where 0 less than $b$ less than $infty$, $ain C^1[0,infty)$ and $fin C^1([0,infty)imes [0, infty), [0, infty))$ satisfy suitable conditions. The proof of our main result is based on the shooting method and the Sturm comparison theorem.http://ejde.math.txstate.edu/Volumes/2004/142/abstr.htmlBoundary value problempositive solutionsuniquenessshooting methodSturm comparison theorem.
collection DOAJ
language English
format Article
sources DOAJ
author Yulian An
Ruyun Ma
spellingShingle Yulian An
Ruyun Ma
Uniqueness of positive solutions for a class of ODE's with Dirichlet boundary conditions
Electronic Journal of Differential Equations
Boundary value problem
positive solutions
uniqueness
shooting method
Sturm comparison theorem.
author_facet Yulian An
Ruyun Ma
author_sort Yulian An
title Uniqueness of positive solutions for a class of ODE's with Dirichlet boundary conditions
title_short Uniqueness of positive solutions for a class of ODE's with Dirichlet boundary conditions
title_full Uniqueness of positive solutions for a class of ODE's with Dirichlet boundary conditions
title_fullStr Uniqueness of positive solutions for a class of ODE's with Dirichlet boundary conditions
title_full_unstemmed Uniqueness of positive solutions for a class of ODE's with Dirichlet boundary conditions
title_sort uniqueness of positive solutions for a class of ode's with dirichlet boundary conditions
publisher Texas State University
series Electronic Journal of Differential Equations
issn 1072-6691
publishDate 2004-11-01
description We study the uniqueness of positive solutions of the boundary-value problem $$displaylines{ u''+a(t)u'+f(t,u)=0 ,quad tin (0,b)cr u(0)=0,u(b)=0,, }$$ where 0 less than $b$ less than $infty$, $ain C^1[0,infty)$ and $fin C^1([0,infty)imes [0, infty), [0, infty))$ satisfy suitable conditions. The proof of our main result is based on the shooting method and the Sturm comparison theorem.
topic Boundary value problem
positive solutions
uniqueness
shooting method
Sturm comparison theorem.
url http://ejde.math.txstate.edu/Volumes/2004/142/abstr.html
work_keys_str_mv AT yulianan uniquenessofpositivesolutionsforaclassofodeswithdirichletboundaryconditions
AT ruyunma uniquenessofpositivesolutionsforaclassofodeswithdirichletboundaryconditions
_version_ 1725881132418859008