Uniqueness of positive solutions for a class of ODE's with Dirichlet boundary conditions
We study the uniqueness of positive solutions of the boundary-value problem $$displaylines{ u''+a(t)u'+f(t,u)=0 ,quad tin (0,b)cr u(0)=0,u(b)=0,, }$$ where 0 less than $b$ less than $infty$, $ain C^1[0,infty)$ and $fin C^1([0,infty)imes [0, infty), [0, infty))$ satisfy suitable cond...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2004-11-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2004/142/abstr.html |
id |
doaj-e6bd6507fdcf4735ab53c6eb5ae73b85 |
---|---|
record_format |
Article |
spelling |
doaj-e6bd6507fdcf4735ab53c6eb5ae73b852020-11-24T21:51:00ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912004-11-01200414219Uniqueness of positive solutions for a class of ODE's with Dirichlet boundary conditionsYulian AnRuyun MaWe study the uniqueness of positive solutions of the boundary-value problem $$displaylines{ u''+a(t)u'+f(t,u)=0 ,quad tin (0,b)cr u(0)=0,u(b)=0,, }$$ where 0 less than $b$ less than $infty$, $ain C^1[0,infty)$ and $fin C^1([0,infty)imes [0, infty), [0, infty))$ satisfy suitable conditions. The proof of our main result is based on the shooting method and the Sturm comparison theorem.http://ejde.math.txstate.edu/Volumes/2004/142/abstr.htmlBoundary value problempositive solutionsuniquenessshooting methodSturm comparison theorem. |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yulian An Ruyun Ma |
spellingShingle |
Yulian An Ruyun Ma Uniqueness of positive solutions for a class of ODE's with Dirichlet boundary conditions Electronic Journal of Differential Equations Boundary value problem positive solutions uniqueness shooting method Sturm comparison theorem. |
author_facet |
Yulian An Ruyun Ma |
author_sort |
Yulian An |
title |
Uniqueness of positive solutions for a class of ODE's with Dirichlet boundary conditions |
title_short |
Uniqueness of positive solutions for a class of ODE's with Dirichlet boundary conditions |
title_full |
Uniqueness of positive solutions for a class of ODE's with Dirichlet boundary conditions |
title_fullStr |
Uniqueness of positive solutions for a class of ODE's with Dirichlet boundary conditions |
title_full_unstemmed |
Uniqueness of positive solutions for a class of ODE's with Dirichlet boundary conditions |
title_sort |
uniqueness of positive solutions for a class of ode's with dirichlet boundary conditions |
publisher |
Texas State University |
series |
Electronic Journal of Differential Equations |
issn |
1072-6691 |
publishDate |
2004-11-01 |
description |
We study the uniqueness of positive solutions of the boundary-value problem $$displaylines{ u''+a(t)u'+f(t,u)=0 ,quad tin (0,b)cr u(0)=0,u(b)=0,, }$$ where 0 less than $b$ less than $infty$, $ain C^1[0,infty)$ and $fin C^1([0,infty)imes [0, infty), [0, infty))$ satisfy suitable conditions. The proof of our main result is based on the shooting method and the Sturm comparison theorem. |
topic |
Boundary value problem positive solutions uniqueness shooting method Sturm comparison theorem. |
url |
http://ejde.math.txstate.edu/Volumes/2004/142/abstr.html |
work_keys_str_mv |
AT yulianan uniquenessofpositivesolutionsforaclassofodeswithdirichletboundaryconditions AT ruyunma uniquenessofpositivesolutionsforaclassofodeswithdirichletboundaryconditions |
_version_ |
1725881132418859008 |