Um algoritmo construtivo baseado em uma abordagem algébrica do problema quadrático de alocação

O Problema Quadrático de Alocação, PQA, foi estudado utilizando uma abordagem algébrica através de uma relaxação linear, o Problema de Alocação Linear, PAL. A utilização dessa abordagem se deve ao fato de existir na literatura o Teorema das Inversões demonstrado por Rangel em [Ran00] que associa o c...

Full description

Bibliographic Details
Main Authors: Leandro Colombi Resendo, Maria Cristina Rangel
Format: Article
Language:English
Published: Sociedade Brasileira de Pesquisa Operacional 2006-04-01
Series:Pesquisa Operacional
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0101-74382006000100007
Description
Summary:O Problema Quadrático de Alocação, PQA, foi estudado utilizando uma abordagem algébrica através de uma relaxação linear, o Problema de Alocação Linear, PAL. A utilização dessa abordagem se deve ao fato de existir na literatura o Teorema das Inversões demonstrado por Rangel em [Ran00] que associa o custo de uma solução do PQA ao número de inversões de sua correspondente linear no PAL. Embora seja polinomial o reconhecimento de uma solução linear viável para o PQA, caracterizar no conjunto de todas as soluções do PAL quais são as que satisfazem o PQA é uma tarefa extremamente difícil. Neste trabalho construímos uma matriz que armazena informações de soluções lineares capazes de gerar soluções quadráticas. Combinando esse mapeamento com o Teorema das Inversões apresentamos um método construtivo que gera soluções iniciais de boa qualidade. A grande vantagem dessa matriz é que seu custo computacional e gasto de memória são baixos. Propomos também uma versão paralela deste algoritmo.<br>The Quadratic Assignment Problem, QAP, was studied using an algebraic approach through a linear relaxation, the Linear Assignment Problem, LAP. The reason for this approach is the Inversion Theorem demonstrated by Rangel [Ran00]. In this theorem, the QAP solution cost is associated to the number of inversions of the linear correspondent. Although recognizing if a linear solution correspond to a QAP solution is polynomial, there are much more LAP solutions than QAP solutions, and therefore to find them is a hard work. We construct a matrix that stores information about LAP solutions that are able to generate QAP solutions. The Inversion Theorem in conjuction with this matrix permitted us to present a constructive method that generates good initial solutions. The great advantage of this matrix is the low computational cost of time and memory. A parallel version of this algorithm is proposed and implemented in this work.
ISSN:0101-7438
1678-5142