Kinematics Analysis and Optimization of a Multi-Mode Mobile Parallel Mechanism
This paper aims to disclose the kinematics and optimize the design of multi-mode mobile parallel mechanism. To this end, a multi-mode mobile parallel mechanism was designed based on single-loop planar 4R systems. The horizontally symmetric mechanism is controlled by two motors: the mechanism can swi...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering in Osijek
2021-01-01
|
Series: | Tehnički Vjesnik |
Subjects: | |
Online Access: | https://hrcak.srce.hr/file/366029 |
Summary: | This paper aims to disclose the kinematics and optimize the design of multi-mode mobile parallel mechanism. To this end, a multi-mode mobile parallel mechanism was designed based on single-loop planar 4R systems. The horizontally symmetric mechanism is controlled by two motors: the mechanism can switch freely among different modes of movements (e.g. sliding, turning and rolling) by changing the input angles of the two motors. Based on the mechanism structure, the author analysed the degrees of freedom (DOFs) and kinematics of each mode, and optimized the stability of the mechanism. The results show that the mechanism is more stable at a short rod length and small rotating angle, when its width is constant. Finally, the theoretical correctness of the mechanism was verified through simulation and prototype test. The research findings provide a valuable reference for similar studies on multi-mode mobile parallel mechanism, and lay the theoretical basis for the application of mobile robots in various fields. |
---|---|
ISSN: | 1330-3651 1848-6339 |