Measurement of fracture energy of concrete at high strain rates

The Hopkinson Bar has been widely used by many researchers for the analysis of dynamic properties of different brittle materials and, due to its great interest, for the study of concrete. In concrete structures subjected to high velocity impacts, initial compression pulses travel through the materia...

Full description

Bibliographic Details
Main Authors: Rey-de-Pedraza V., Gálvez F., Cendón Franco D.
Format: Article
Language:English
Published: EDP Sciences 2018-01-01
Series:EPJ Web of Conferences
Online Access:https://doi.org/10.1051/epjconf/201818302065
Description
Summary:The Hopkinson Bar has been widely used by many researchers for the analysis of dynamic properties of different brittle materials and, due to its great interest, for the study of concrete. In concrete structures subjected to high velocity impacts, initial compression pulses travel through the material leading to tensile stresses when they reach a free surface. These tensile efforts are the main cause of concrete fracture due to its low tensile strength compared to the compressive one. This is the reason why dynamic tests in concrete are becoming of great interest and are mostly focused in obtaining tensile fracture properties. Apart form the dynamic tensile strength, which has been widely studied by many authors in the last decades, the dynamic fracture energy presents an increased difficulty and so not too much experimental information can be found in literature. Moreover, up to date there is not a clear methodology proposed in order to obtain this parameter in an accurate way. In this work a new methodology for measuring the dynamic fracture energy is proposed by using the Hopkinson Bar technique. Initial tests for a conventional concrete have been carried out and the results for the dynamic fracture energy of concrete at different strain rates are presented.
ISSN:2100-014X