Multisensory Plucked Instrument Modeling in Unity3D: From Keytar to Accurate String Prototyping

Keytar is a plucked guitar simulation mockup developed with Unity3D that provides auditory, visual, and haptic feedback to the player through a Phantom Omni robotic arm. Starting from a description of the implementation of the virtual instrument, we discuss our ongoing work. The ultimate goal is the...

Full description

Bibliographic Details
Main Authors: Federico Fontana, Razvan Paisa, Roberto Ranon, Stefania Serafin
Format: Article
Language:English
Published: MDPI AG 2020-02-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/4/1452
Description
Summary:Keytar is a plucked guitar simulation mockup developed with Unity3D that provides auditory, visual, and haptic feedback to the player through a Phantom Omni robotic arm. Starting from a description of the implementation of the virtual instrument, we discuss our ongoing work. The ultimate goal is the creation of a set of software tools available for developing plucked instruments in Unity3D. Using such tools, sonic interaction designers can efficiently simulate plucked string prototypes and realize multisensory interactions with virtual instruments for unprecedented purposes, such as testing innovative plucked string interfaces or training machine learning algorithms with data about the dynamics of the performance, which are immediately accessible from the machine.
ISSN:2076-3417