Analysis of the ESD Reconstruction Methodology Based on Current Probe Measurements and Frequency Response Compensation for Different ESD Generators and Severity Test Levels

System-level electrostatic discharge testing according to IEC 61000-4-2 has been the main standardized electrostatic discharge immunity testing procedure for the last few decades. The correlation between a failed test result and the injected electrostatic discharge current waveform characteristics,...

Full description

Bibliographic Details
Main Authors: Panagiotis K. Papastamatis, Evangelos A. Paliatsos, Ioannis F. Gonos, Ioannis A. Stathopulos
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/10/6/728
Description
Summary:System-level electrostatic discharge testing according to IEC 61000-4-2 has been the main standardized electrostatic discharge immunity testing procedure for the last few decades. The correlation between a failed test result and the injected electrostatic discharge current waveform characteristics, as well as the reduced reproducibility of the standard methodology, have always concerned product manufacturers and test engineers. In an effort to accurately reconstruct the electrostatic discharge current during immunity testing, researchers are focusing more and more on the usability of current probes in capturing the injected current in “real time”. In this article, the results of a proposed methodology, based on current probe measurements and a frequency response compensation method, published in recent bibliography, for different test levels and electrostatic discharge generators are presented, aiming to highlight the advantages and disadvantages of the method, investigate its universal applicability, and introduce points of future work toward the current reconstruction during system-level electrostatic discharge testing effort.
ISSN:2079-9292