Ginsenoside Prolongs the Lifespan of <i>C. elegans</i> via Lipid Metabolism and Activating the Stress Response Signaling Pathway

<i>Panax ginseng</i> is a valuable traditional Chinese medicine in Northeast China. Ginsenoside, the active component of ginseng, has not been investigated much for its effects on aging and its underlying mechanism(s) of action. Here, we investigated the effects of total ginsenoside (TG)...

Full description

Bibliographic Details
Main Authors: Xiaoxuan Yu, Hui Li, Dongfa Lin, Weizhuo Guo, Zhihao Xu, Liping Wang, Shuwen Guan
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/22/18/9668
Description
Summary:<i>Panax ginseng</i> is a valuable traditional Chinese medicine in Northeast China. Ginsenoside, the active component of ginseng, has not been investigated much for its effects on aging and its underlying mechanism(s) of action. Here, we investigated the effects of total ginsenoside (TG), a mixture of the primary active ginsenosides from <i>Panax ginseng</i>, on the lifespan of <i>Caenorhabditis elegans</i> (<i>C. elegans</i>). We found that TG extended the lifespan of <i>C. elegans</i> and reduced lipofuscin accumulation. Moreover, TG increased the survival of <i>C. elegans</i> in response to heat and oxidative stress via the reduction of ROS. Next, we used RNA-seq to fully define the antiaging mechanism(s) of TG. The KEGG pathway analysis showed that TG can prolong the lifespan and is involved in the longevity regulating pathway. qPCR showed that TG upregulated the expression of <i>nrh-80</i>, <i>daf-12</i>, <i>daf-16</i>, <i>hsf-1</i> and their downstream genes. TG also reduced the fat accumulation and promoted lipid metabolism. Moreover, TG failed to extend the lifespan of <i>daf-16</i> and <i>hsf-1</i> mutants, highlighting their role in the antiaging effects of TG in <i>C. elegans</i>. The four main constitution of TG were then confirmed by HPLC and included ginsenoside Re, Rg<sub>1</sub>, Rg<sub>2</sub> and Rd. Of the ginsenosides, only ginsenoside Rd prolonged the lifespan of <i>C. elegans</i> to levels comparable to TG. These findings provided mechanistic insight into the antiaging effects of ginsenoside in <i>C. elegans</i>.
ISSN:1661-6596
1422-0067