Viscosity Approximation Methods for <inline-formula> <mml:math id="mm1000" display="block"> <mml:semantics> <mml:mrow> <mml:mo>*</mml:mo> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>−Nonexpansive Multi-Valued Mappings in Convex Metric Spaces

In this paper, we prove convergence theorems for viscosity approximation processes involving <inline-formula> <math display="inline"> <semantics> <mrow> <mo>*</mo> </mrow> </semantics> </math> </inline-formula>&#8722;nonexpans...

Full description

Bibliographic Details
Main Authors: Azadeh Ghanifard, Hashem Parvaneh Masiha, Manuel De La Sen, Maryam Ramezani
Format: Article
Language:English
Published: MDPI AG 2020-01-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/9/1/10
id doaj-e82668e2df214758bb7b32272f5838ed
record_format Article
spelling doaj-e82668e2df214758bb7b32272f5838ed2020-11-25T02:45:08ZengMDPI AGAxioms2075-16802020-01-01911010.3390/axioms9010010axioms9010010Viscosity Approximation Methods for <inline-formula> <mml:math id="mm1000" display="block"> <mml:semantics> <mml:mrow> <mml:mo>*</mml:mo> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>−Nonexpansive Multi-Valued Mappings in Convex Metric SpacesAzadeh Ghanifard0Hashem Parvaneh Masiha1Manuel De La Sen2Maryam Ramezani3Faculty of Mathematics, K. N. Toosi University of Technology, Tehran 16569, IranFaculty of Mathematics, K. N. Toosi University of Technology, Tehran 16569, IranInstitute of Research and Development of Processes University of the Basque Country, 48940 Leioa, SpainDepartment of Mathematics, University of Bojnord, Bojnord 94531, IranIn this paper, we prove convergence theorems for viscosity approximation processes involving <inline-formula> <math display="inline"> <semantics> <mrow> <mo>*</mo> </mrow> </semantics> </math> </inline-formula>&#8722;nonexpansive multi-valued mappings in complete convex metric spaces. We also consider finite and infinite families of such mappings and prove convergence of the proposed iteration schemes to common fixed points of them. Our results improve and extend some corresponding results.https://www.mdpi.com/2075-1680/9/1/10*−nonexpansive multi-valued mappingviscosity approximation methodsfixed pointconvex metric space
collection DOAJ
language English
format Article
sources DOAJ
author Azadeh Ghanifard
Hashem Parvaneh Masiha
Manuel De La Sen
Maryam Ramezani
spellingShingle Azadeh Ghanifard
Hashem Parvaneh Masiha
Manuel De La Sen
Maryam Ramezani
Viscosity Approximation Methods for <inline-formula> <mml:math id="mm1000" display="block"> <mml:semantics> <mml:mrow> <mml:mo>*</mml:mo> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>−Nonexpansive Multi-Valued Mappings in Convex Metric Spaces
Axioms
*−nonexpansive multi-valued mapping
viscosity approximation methods
fixed point
convex metric space
author_facet Azadeh Ghanifard
Hashem Parvaneh Masiha
Manuel De La Sen
Maryam Ramezani
author_sort Azadeh Ghanifard
title Viscosity Approximation Methods for <inline-formula> <mml:math id="mm1000" display="block"> <mml:semantics> <mml:mrow> <mml:mo>*</mml:mo> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>−Nonexpansive Multi-Valued Mappings in Convex Metric Spaces
title_short Viscosity Approximation Methods for <inline-formula> <mml:math id="mm1000" display="block"> <mml:semantics> <mml:mrow> <mml:mo>*</mml:mo> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>−Nonexpansive Multi-Valued Mappings in Convex Metric Spaces
title_full Viscosity Approximation Methods for <inline-formula> <mml:math id="mm1000" display="block"> <mml:semantics> <mml:mrow> <mml:mo>*</mml:mo> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>−Nonexpansive Multi-Valued Mappings in Convex Metric Spaces
title_fullStr Viscosity Approximation Methods for <inline-formula> <mml:math id="mm1000" display="block"> <mml:semantics> <mml:mrow> <mml:mo>*</mml:mo> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>−Nonexpansive Multi-Valued Mappings in Convex Metric Spaces
title_full_unstemmed Viscosity Approximation Methods for <inline-formula> <mml:math id="mm1000" display="block"> <mml:semantics> <mml:mrow> <mml:mo>*</mml:mo> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>−Nonexpansive Multi-Valued Mappings in Convex Metric Spaces
title_sort viscosity approximation methods for <inline-formula> <mml:math id="mm1000" display="block"> <mml:semantics> <mml:mrow> <mml:mo>*</mml:mo> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>−nonexpansive multi-valued mappings in convex metric spaces
publisher MDPI AG
series Axioms
issn 2075-1680
publishDate 2020-01-01
description In this paper, we prove convergence theorems for viscosity approximation processes involving <inline-formula> <math display="inline"> <semantics> <mrow> <mo>*</mo> </mrow> </semantics> </math> </inline-formula>&#8722;nonexpansive multi-valued mappings in complete convex metric spaces. We also consider finite and infinite families of such mappings and prove convergence of the proposed iteration schemes to common fixed points of them. Our results improve and extend some corresponding results.
topic *−nonexpansive multi-valued mapping
viscosity approximation methods
fixed point
convex metric space
url https://www.mdpi.com/2075-1680/9/1/10
work_keys_str_mv AT azadehghanifard viscosityapproximationmethodsforinlineformulammlmathidmm1000displayblockmmlsemanticsmmlmrowmmlmommlmommlmrowmmlsemanticsmmlmathinlineformulanonexpansivemultivaluedmappingsinconvexmetricspaces
AT hashemparvanehmasiha viscosityapproximationmethodsforinlineformulammlmathidmm1000displayblockmmlsemanticsmmlmrowmmlmommlmommlmrowmmlsemanticsmmlmathinlineformulanonexpansivemultivaluedmappingsinconvexmetricspaces
AT manueldelasen viscosityapproximationmethodsforinlineformulammlmathidmm1000displayblockmmlsemanticsmmlmrowmmlmommlmommlmrowmmlsemanticsmmlmathinlineformulanonexpansivemultivaluedmappingsinconvexmetricspaces
AT maryamramezani viscosityapproximationmethodsforinlineformulammlmathidmm1000displayblockmmlsemanticsmmlmrowmmlmommlmommlmrowmmlsemanticsmmlmathinlineformulanonexpansivemultivaluedmappingsinconvexmetricspaces
_version_ 1724763969356300288