The ‘in vivo lifestyle’ of bile acid 7α-dehydroxylating bacteria: comparative genomics, metatranscriptomic, and bile acid metabolomics analysis of a defined microbial community in gnotobiotic mice

The formation of secondary bile acids by gut microbes is a current topic of considerable biomedical interest. However, a detailed understanding of the biology of anaerobic bacteria in the genus Clostridium that are capable of generating secondary bile acids is lacking. We therefore sought to determi...

Full description

Bibliographic Details
Main Authors: Jason M. Ridlon, Saravanan Devendran, João Mp Alves, Heidi Doden, Patricia G. Wolf, Gabriel V. Pereira, Lindsey Ly, Alyssa Volland, Hajime Takei, Hiroshi Nittono, Tsuyoshi Murai, Takao Kurosawa, George E. Chlipala, Stefan J. Green, Alvaro G. Hernandez, Christopher J. Fields, Christy L. Wright, Genta Kakiyama, Isaac Cann, Purna Kashyap, Vance McCracken, H. Rex Gaskins
Format: Article
Language:English
Published: Taylor & Francis Group 2020-05-01
Series:Gut Microbes
Subjects:
Online Access:http://dx.doi.org/10.1080/19490976.2019.1618173
id doaj-e86dc56997764544b9457a22c77e5788
record_format Article
spelling doaj-e86dc56997764544b9457a22c77e57882021-01-04T18:02:36ZengTaylor & Francis GroupGut Microbes1949-09761949-09842020-05-0111338140410.1080/19490976.2019.16181731618173The ‘in vivo lifestyle’ of bile acid 7α-dehydroxylating bacteria: comparative genomics, metatranscriptomic, and bile acid metabolomics analysis of a defined microbial community in gnotobiotic miceJason M. Ridlon0Saravanan Devendran1João Mp Alves2Heidi Doden3Patricia G. Wolf4Gabriel V. Pereira5Lindsey Ly6Alyssa Volland7Hajime Takei8Hiroshi Nittono9Tsuyoshi Murai10Takao Kurosawa11George E. Chlipala12Stefan J. Green13Alvaro G. Hernandez14Christopher J. Fields15Christy L. Wright16Genta Kakiyama17Isaac Cann18Purna Kashyap19Vance McCracken20H. Rex Gaskins21Carl R. Woese Institute for Genomic BiologyCarl R. Woese Institute for Genomic BiologyInstitute of Biomedical Sciences, University of São PauloCarl R. Woese Institute for Genomic BiologyCarl R. Woese Institute for Genomic BiologyCarl R. Woese Institute for Genomic BiologyCarl R. Woese Institute for Genomic BiologyCarl R. Woese Institute for Genomic BiologyJunshin Clinic Bile Acid InstituteJunshin Clinic Bile Acid InstituteHealth Sciences University of HokkaidoHealth Sciences University of HokkaidoUniversity of Illinois at ChicagoUniversity of Illinois at ChicagoUniversity of Illinois at Urbana-ChampaignUniversity of Illinois at Urbana-ChampaignUniversity of Illinois at Urbana-ChampaignVirginia Commonwealth UniversityCarl R. Woese Institute for Genomic BiologyMayo ClinicMayo ClinicUniversity of Illinois at Urbana-ChampaignThe formation of secondary bile acids by gut microbes is a current topic of considerable biomedical interest. However, a detailed understanding of the biology of anaerobic bacteria in the genus Clostridium that are capable of generating secondary bile acids is lacking. We therefore sought to determine the transcriptional responses of two prominent secondary bile acid producing bacteria, Clostridium hylemonae and Clostridium hiranonis to bile salts (in vitro) and the cecal environment of gnotobiotic mice. The genomes of C. hylemonae DSM 15053 and C. hiranonis DSM 13275 were closed, and found to encode 3,647 genes (3,584 protein-coding) and 2,363 predicted genes (of which 2,239 are protein-coding), respectively, and 1,035 orthologs were shared between C. hylemonae and C. hiranonis. RNA-Seq analysis was performed in growth medium alone, and in the presence of cholic acid (CA) and deoxycholic acid (DCA). Growth with CA resulted in differential expression (>0.58 log2FC; FDR < 0.05) of 197 genes in C. hiranonis and 118 genes in C. hylemonae. The bile acid-inducible operons (bai) from each organism were highly upregulated in the presence of CA but not DCA. We then colonized germ-free mice with human gut bacterial isolates capable of metabolizing taurine-conjugated bile acids. This consortium included bile salt hydrolase-expressing Bacteroides uniformis ATCC 8492, Bacteroides vulgatus ATCC 8482, Parabacteroides distasonis DSM 20701, as well as taurine-respiring Bilophila wadsworthia DSM 11045, and deoxycholic/lithocholic acid generating Clostridium hylemonae DSM 15053 and Clostridium hiranonis DSM 13275. Butyrate and iso-bile acid-forming Blautia producta ATCC 27340 was also included. The Bacteroidetes made up 84.71% of 16S rDNA cecal reads, B. wadsworthia, constituted 14.7%, and the clostridia made up <.75% of 16S rDNA cecal reads. Bile acid metabolomics of the cecum, serum, and liver indicate that the synthetic community were capable of functional bile salt deconjugation, oxidation/isomerization, and 7α-dehydroxylation of bile acids. Cecal metatranscriptome analysis revealed expression of genes involved in metabolism of taurine-conjugated bile acids. The in vivo transcriptomes of C. hylemonae and C. hiranonis suggest fermentation of simple sugars and utilization of amino acids glycine and proline as electron acceptors. Genes predicted to be involved in trimethylamine (TMA) formation were also expressed.http://dx.doi.org/10.1080/19490976.2019.1618173gnotobioticrna-seqclostridiumbile acid
collection DOAJ
language English
format Article
sources DOAJ
author Jason M. Ridlon
Saravanan Devendran
João Mp Alves
Heidi Doden
Patricia G. Wolf
Gabriel V. Pereira
Lindsey Ly
Alyssa Volland
Hajime Takei
Hiroshi Nittono
Tsuyoshi Murai
Takao Kurosawa
George E. Chlipala
Stefan J. Green
Alvaro G. Hernandez
Christopher J. Fields
Christy L. Wright
Genta Kakiyama
Isaac Cann
Purna Kashyap
Vance McCracken
H. Rex Gaskins
spellingShingle Jason M. Ridlon
Saravanan Devendran
João Mp Alves
Heidi Doden
Patricia G. Wolf
Gabriel V. Pereira
Lindsey Ly
Alyssa Volland
Hajime Takei
Hiroshi Nittono
Tsuyoshi Murai
Takao Kurosawa
George E. Chlipala
Stefan J. Green
Alvaro G. Hernandez
Christopher J. Fields
Christy L. Wright
Genta Kakiyama
Isaac Cann
Purna Kashyap
Vance McCracken
H. Rex Gaskins
The ‘in vivo lifestyle’ of bile acid 7α-dehydroxylating bacteria: comparative genomics, metatranscriptomic, and bile acid metabolomics analysis of a defined microbial community in gnotobiotic mice
Gut Microbes
gnotobiotic
rna-seq
clostridium
bile acid
author_facet Jason M. Ridlon
Saravanan Devendran
João Mp Alves
Heidi Doden
Patricia G. Wolf
Gabriel V. Pereira
Lindsey Ly
Alyssa Volland
Hajime Takei
Hiroshi Nittono
Tsuyoshi Murai
Takao Kurosawa
George E. Chlipala
Stefan J. Green
Alvaro G. Hernandez
Christopher J. Fields
Christy L. Wright
Genta Kakiyama
Isaac Cann
Purna Kashyap
Vance McCracken
H. Rex Gaskins
author_sort Jason M. Ridlon
title The ‘in vivo lifestyle’ of bile acid 7α-dehydroxylating bacteria: comparative genomics, metatranscriptomic, and bile acid metabolomics analysis of a defined microbial community in gnotobiotic mice
title_short The ‘in vivo lifestyle’ of bile acid 7α-dehydroxylating bacteria: comparative genomics, metatranscriptomic, and bile acid metabolomics analysis of a defined microbial community in gnotobiotic mice
title_full The ‘in vivo lifestyle’ of bile acid 7α-dehydroxylating bacteria: comparative genomics, metatranscriptomic, and bile acid metabolomics analysis of a defined microbial community in gnotobiotic mice
title_fullStr The ‘in vivo lifestyle’ of bile acid 7α-dehydroxylating bacteria: comparative genomics, metatranscriptomic, and bile acid metabolomics analysis of a defined microbial community in gnotobiotic mice
title_full_unstemmed The ‘in vivo lifestyle’ of bile acid 7α-dehydroxylating bacteria: comparative genomics, metatranscriptomic, and bile acid metabolomics analysis of a defined microbial community in gnotobiotic mice
title_sort ‘in vivo lifestyle’ of bile acid 7α-dehydroxylating bacteria: comparative genomics, metatranscriptomic, and bile acid metabolomics analysis of a defined microbial community in gnotobiotic mice
publisher Taylor & Francis Group
series Gut Microbes
issn 1949-0976
1949-0984
publishDate 2020-05-01
description The formation of secondary bile acids by gut microbes is a current topic of considerable biomedical interest. However, a detailed understanding of the biology of anaerobic bacteria in the genus Clostridium that are capable of generating secondary bile acids is lacking. We therefore sought to determine the transcriptional responses of two prominent secondary bile acid producing bacteria, Clostridium hylemonae and Clostridium hiranonis to bile salts (in vitro) and the cecal environment of gnotobiotic mice. The genomes of C. hylemonae DSM 15053 and C. hiranonis DSM 13275 were closed, and found to encode 3,647 genes (3,584 protein-coding) and 2,363 predicted genes (of which 2,239 are protein-coding), respectively, and 1,035 orthologs were shared between C. hylemonae and C. hiranonis. RNA-Seq analysis was performed in growth medium alone, and in the presence of cholic acid (CA) and deoxycholic acid (DCA). Growth with CA resulted in differential expression (>0.58 log2FC; FDR < 0.05) of 197 genes in C. hiranonis and 118 genes in C. hylemonae. The bile acid-inducible operons (bai) from each organism were highly upregulated in the presence of CA but not DCA. We then colonized germ-free mice with human gut bacterial isolates capable of metabolizing taurine-conjugated bile acids. This consortium included bile salt hydrolase-expressing Bacteroides uniformis ATCC 8492, Bacteroides vulgatus ATCC 8482, Parabacteroides distasonis DSM 20701, as well as taurine-respiring Bilophila wadsworthia DSM 11045, and deoxycholic/lithocholic acid generating Clostridium hylemonae DSM 15053 and Clostridium hiranonis DSM 13275. Butyrate and iso-bile acid-forming Blautia producta ATCC 27340 was also included. The Bacteroidetes made up 84.71% of 16S rDNA cecal reads, B. wadsworthia, constituted 14.7%, and the clostridia made up <.75% of 16S rDNA cecal reads. Bile acid metabolomics of the cecum, serum, and liver indicate that the synthetic community were capable of functional bile salt deconjugation, oxidation/isomerization, and 7α-dehydroxylation of bile acids. Cecal metatranscriptome analysis revealed expression of genes involved in metabolism of taurine-conjugated bile acids. The in vivo transcriptomes of C. hylemonae and C. hiranonis suggest fermentation of simple sugars and utilization of amino acids glycine and proline as electron acceptors. Genes predicted to be involved in trimethylamine (TMA) formation were also expressed.
topic gnotobiotic
rna-seq
clostridium
bile acid
url http://dx.doi.org/10.1080/19490976.2019.1618173
work_keys_str_mv AT jasonmridlon theinvivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT saravanandevendran theinvivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT joaompalves theinvivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT heididoden theinvivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT patriciagwolf theinvivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT gabrielvpereira theinvivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT lindseyly theinvivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT alyssavolland theinvivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT hajimetakei theinvivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT hiroshinittono theinvivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT tsuyoshimurai theinvivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT takaokurosawa theinvivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT georgeechlipala theinvivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT stefanjgreen theinvivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT alvaroghernandez theinvivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT christopherjfields theinvivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT christylwright theinvivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT gentakakiyama theinvivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT isaaccann theinvivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT purnakashyap theinvivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT vancemccracken theinvivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT hrexgaskins theinvivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT jasonmridlon invivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT saravanandevendran invivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT joaompalves invivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT heididoden invivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT patriciagwolf invivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT gabrielvpereira invivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT lindseyly invivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT alyssavolland invivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT hajimetakei invivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT hiroshinittono invivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT tsuyoshimurai invivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT takaokurosawa invivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT georgeechlipala invivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT stefanjgreen invivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT alvaroghernandez invivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT christopherjfields invivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT christylwright invivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT gentakakiyama invivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT isaaccann invivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT purnakashyap invivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT vancemccracken invivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
AT hrexgaskins invivolifestyleofbileacid7adehydroxylatingbacteriacomparativegenomicsmetatranscriptomicandbileacidmetabolomicsanalysisofadefinedmicrobialcommunityingnotobioticmice
_version_ 1724349158476742656