Phosphatidic Acid: From Pleiotropic Functions to Neuronal Pathology

Among the cellular lipids, phosphatidic acid (PA) is a peculiar one as it is at the same time a key building block of phospholipid synthesis and a major lipid second messenger conveying signaling information. The latter is thought to largely occur through the ability of PA to recruit and/or activate...

Full description

Bibliographic Details
Main Authors: Emeline Tanguy, Qili Wang, Hervé Moine, Nicolas Vitale
Format: Article
Language:English
Published: Frontiers Media S.A. 2019-01-01
Series:Frontiers in Cellular Neuroscience
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fncel.2019.00002/full
Description
Summary:Among the cellular lipids, phosphatidic acid (PA) is a peculiar one as it is at the same time a key building block of phospholipid synthesis and a major lipid second messenger conveying signaling information. The latter is thought to largely occur through the ability of PA to recruit and/or activate specific proteins in restricted compartments and within those only at defined submembrane areas. Furthermore, with its cone-shaped geometry PA locally changes membrane topology and may thus be a key player in membrane trafficking events, especially in membrane fusion and fission steps, where lipid remodeling is believed to be crucial. These pleiotropic cellular functions of PA, including phospholipid synthesis and homeostasis together with important signaling activity, imply that perturbations of PA metabolism could lead to serious pathological conditions. In this mini-review article, after outlining the main cellular functions of PA, we highlight the different neurological diseases that could, at least in part, be attributed to an alteration in PA synthesis and/or catabolism.
ISSN:1662-5102