Epistasis-driven identification of SLC25A51 as a regulator of human mitochondrial NAD import

Maintenance of a mitochondrial NAD+ pool is critical for cellular life, yet the existence and identity of the transporter responsible for mitochondrial NAD+ uptake was unknown until recently. Here, the authors use genomic, genetic, and metabolomic approaches to demonstrate that SLC25A51 controls NAD...

Full description

Bibliographic Details
Main Authors: Enrico Girardi, Gennaro Agrimi, Ulrich Goldmann, Giuseppe Fiume, Sabrina Lindinger, Vitaly Sedlyarov, Ismet Srndic, Bettina Gürtl, Benedikt Agerer, Felix Kartnig, Pasquale Scarcia, Maria Antonietta Di Noia, Eva Liñeiro, Manuele Rebsamen, Tabea Wiedmer, Andreas Bergthaler, Luigi Palmieri, Giulio Superti-Furga
Format: Article
Language:English
Published: Nature Publishing Group 2020-12-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-020-19871-x
Description
Summary:Maintenance of a mitochondrial NAD+ pool is critical for cellular life, yet the existence and identity of the transporter responsible for mitochondrial NAD+ uptake was unknown until recently. Here, the authors use genomic, genetic, and metabolomic approaches to demonstrate that SLC25A51 controls NAD+ mitochondrial levels and is the functional homolog of the yeast mitochondrial NAD+ transporter.
ISSN:2041-1723