Existence of solution for a class of biharmonic equations

In this paper, We prove the solvability of the biharmonic problem $$\begin{cases}\Delta^{2}u=f(x,u)+h ~~~~in~~\Omega, &\hbox{}\\ u=\Delta u=0 ~~~~~~on ~~\partial\Omega,\\\end{cases}$$ for a given function $h\in L^2(\Omega)$, if the limits at infinity of the quotients $f(x,s)/s$ and $2F(x,s)/s...

Full description

Bibliographic Details
Main Authors: Najib Tsouli, Omar Chakrone, Omar Darhouche, Mostafa Rahmani
Format: Article
Language:English
Published: Sociedade Brasileira de Matemática 2014-01-01
Series:Boletim da Sociedade Paranaense de Matemática
Subjects:
Online Access:http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/16178
id doaj-e91ab5af60d5414a81de45f578a9d668
record_format Article
spelling doaj-e91ab5af60d5414a81de45f578a9d6682020-11-24T23:49:20ZengSociedade Brasileira de MatemáticaBoletim da Sociedade Paranaense de Matemática0037-87122175-11882014-01-013219910810.5269/bspm.v32i1.161789303Existence of solution for a class of biharmonic equationsNajib Tsouli0Omar Chakrone1Omar Darhouche2Mostafa Rahmani3University Mohamed 1 Department of MathematicsUniversity Mohamed 1 Department of MathematicsUniversity Mohamed 1 Department of MathematicsUniversity Mohamed 1 Department of MathematicsIn this paper, We prove the solvability of the biharmonic problem $$\begin{cases}\Delta^{2}u=f(x,u)+h ~~~~in~~\Omega, &\hbox{}\\ u=\Delta u=0 ~~~~~~on ~~\partial\Omega,\\\end{cases}$$ for a given function $h\in L^2(\Omega)$, if the limits at infinity of the quotients $f(x,s)/s$ and $2F(x,s)/s$ for a.e.$x\in\Omega$ lie between two consecutive eigenvalues of the biharmonic operator $\Delta^2$, where $F(x,s)$ denotes the primitive $F(x,s)=\int_{0}^{s}{f(x,t)dt}$.http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/16178Biharmonic equationfourth elliptic equationnonresonance
collection DOAJ
language English
format Article
sources DOAJ
author Najib Tsouli
Omar Chakrone
Omar Darhouche
Mostafa Rahmani
spellingShingle Najib Tsouli
Omar Chakrone
Omar Darhouche
Mostafa Rahmani
Existence of solution for a class of biharmonic equations
Boletim da Sociedade Paranaense de Matemática
Biharmonic equation
fourth elliptic equation
nonresonance
author_facet Najib Tsouli
Omar Chakrone
Omar Darhouche
Mostafa Rahmani
author_sort Najib Tsouli
title Existence of solution for a class of biharmonic equations
title_short Existence of solution for a class of biharmonic equations
title_full Existence of solution for a class of biharmonic equations
title_fullStr Existence of solution for a class of biharmonic equations
title_full_unstemmed Existence of solution for a class of biharmonic equations
title_sort existence of solution for a class of biharmonic equations
publisher Sociedade Brasileira de Matemática
series Boletim da Sociedade Paranaense de Matemática
issn 0037-8712
2175-1188
publishDate 2014-01-01
description In this paper, We prove the solvability of the biharmonic problem $$\begin{cases}\Delta^{2}u=f(x,u)+h ~~~~in~~\Omega, &\hbox{}\\ u=\Delta u=0 ~~~~~~on ~~\partial\Omega,\\\end{cases}$$ for a given function $h\in L^2(\Omega)$, if the limits at infinity of the quotients $f(x,s)/s$ and $2F(x,s)/s$ for a.e.$x\in\Omega$ lie between two consecutive eigenvalues of the biharmonic operator $\Delta^2$, where $F(x,s)$ denotes the primitive $F(x,s)=\int_{0}^{s}{f(x,t)dt}$.
topic Biharmonic equation
fourth elliptic equation
nonresonance
url http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/16178
work_keys_str_mv AT najibtsouli existenceofsolutionforaclassofbiharmonicequations
AT omarchakrone existenceofsolutionforaclassofbiharmonicequations
AT omardarhouche existenceofsolutionforaclassofbiharmonicequations
AT mostafarahmani existenceofsolutionforaclassofbiharmonicequations
_version_ 1725482739487997952