Designing Toxicogenomics Studies that use DNA Array Technology

Background: Bioassays are routinely used to evaluate the toxicity of test agents. Experimental designs for bioassays are largely encompassed by fixed effects linear models. In toxicogenomics studies where DNA arrays measure mRNA levels, the tissue samples are typically generated in a bioassay. These...

Full description

Bibliographic Details
Main Authors: Robert R. Delongchamp, Cruz Velasco, Varsha G. Desai, Taewon Lee, James C. Fuscoe
Format: Article
Language:English
Published: SAGE Publishing 2008-01-01
Series:Bioinformatics and Biology Insights
Online Access:http://la-press.com/article.php?article_id=950
Description
Summary:Background: Bioassays are routinely used to evaluate the toxicity of test agents. Experimental designs for bioassays are largely encompassed by fixed effects linear models. In toxicogenomics studies where DNA arrays measure mRNA levels, the tissue samples are typically generated in a bioassay. These measurements introduce additional sources of variation, which must be properly managed to obtain valid tests of treatment effects.Results: An analysis of covariance model is developed which combines a fixed-effects linear model for the bioassay with important variance components associated with DNA array measurements. These models can accommodate the dominant characteristics of measurements from DNA arrays, and they account for technical variation associated with normalization, spots, dyes, and batches as well as the biological variation associated with the bioassay. An example illustrates how the model is used to identify valid designs and to compare competing designs.Conclusions: Many toxicogenomics studies are bioassays which measure gene expression using DNA arrays. These studies can be designed and analyzed using standard methods with a few modifications to account for characteristics of array measurements, such as multiple endpoints and normalization. As much as possible, technical variation associated with probes, dyes, and batches are managed by blocking treatments within these sources of variation. An example shows how some practical constraints can be accommodated by this modelling and how it allows one to objectively compare competing designs.
ISSN:1177-9322