Electronic cigarette smoke reduces ribosomal protein gene expression to impair protein synthesis in primary human airway epithelial cells

Abstract The widespread use of electronic cigarettes (e-cig) is a serious public health concern; however, mechanisms by which e-cig impair the function of airway epithelial cells—the direct target of e-cig smoke—are not fully understood. Here we report transcriptomic changes, including decreased exp...

Full description

Bibliographic Details
Main Authors: Hae-Ryung Park, Jose Vallarino, Michael O’Sullivan, Charlotte Wirth, Ronald A. Panganiban, Gabrielle Webb, Maya Shumyatcher, Blanca E. Himes, Jin-Ah Park, David C. Christiani, Joseph Allen, Quan Lu
Format: Article
Language:English
Published: Nature Publishing Group 2021-09-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-021-97013-z
Description
Summary:Abstract The widespread use of electronic cigarettes (e-cig) is a serious public health concern; however, mechanisms by which e-cig impair the function of airway epithelial cells—the direct target of e-cig smoke—are not fully understood. Here we report transcriptomic changes, including decreased expression of many ribosomal genes, in airway epithelial cells in response to e-cig exposure. Using RNA-seq we identify over 200 differentially expressed genes in air–liquid interface cultured primary normal human bronchial epithelial (NHBE) exposed to e-cig smoke solution from commercial e-cig cartridges. In particular, exposure to e-cig smoke solution inhibits biological pathways involving ribosomes and protein biogenesis in NHBE cells. Consistent with this effect, expression of corresponding ribosomal proteins and subsequent protein biogenesis are reduced in the cells exposed to e-cig. Gas chromatography/mass spectrometry (GC/MS) analysis identified the presence of five flavoring chemicals designated as ‘high priority’ in regard to respiratory health, and methylglyoxal in e-cig smoke solution. Together, our findings reveal the potential detrimental effect of e-cig smoke on ribosomes and the associated protein biogenesis in airway epithelium. Our study calls for further investigation into how these changes in the airway epithelium contribute to the current epidemic of lung injuries in e-cig users.
ISSN:2045-2322