Network Intrusion Detection Based on Conditional Wasserstein Generative Adversarial Network and Cost-Sensitive Stacked Autoencoder
In the field of intrusion detection, there is often a problem of data imbalance, and more and more unknown types of attacks make detection difficult. To resolve above issues, this article proposes a network intrusion detection model called CWGAN-CSSAE, which combines improved conditional Wasserstein...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9229088/ |