Recommendation system for web article based on association rules and topic modelling

The World Wide Web is now the primary source for information discovery. A user visits websites that provide information and browse on the particular information in accordance   with their   topic interest.   Through  the  navigational process,  visitors  often  had  to  jump  over  the  menu  to  fi...

Full description

Bibliographic Details
Main Authors: Guntur Budi Herwanto, Annisa Maulida Ningtyas
Format: Article
Language:English
Published: Association for Scientic Computing and Electronics, Engineering (ASCEE) 2017-03-01
Series:Bulletin of Social Informatics Theory and Application
Subjects:
LDA
Online Access:https://pubs.ascee.org/index.php/businta/article/view/36
id doaj-ea77fc4079ab447a827929003a8192cb
record_format Article
spelling doaj-ea77fc4079ab447a827929003a8192cb2020-11-25T00:38:17ZengAssociation for Scientic Computing and Electronics, Engineering (ASCEE) Bulletin of Social Informatics Theory and Application2614-00472017-03-0111263310.31763/businta.v1i1.3636Recommendation system for web article based on association rules and topic modellingGuntur Budi HerwantoAnnisa Maulida NingtyasThe World Wide Web is now the primary source for information discovery. A user visits websites that provide information and browse on the particular information in accordance   with their   topic interest.   Through  the  navigational process,  visitors  often  had  to  jump  over  the  menu  to  find  the right  content.  Recommendation system can help the visitors to find the right content immediately.  In this study, we propose a two-level recommendation system, based on association rule and topic similarity.  We generate association rule by applying Apriori algorithm.   The  dataset  for  association  rule  mining  is a  session of  topics  that  made  by  combining  the  result of  sessionization and  topic  modeling.  On  the  other   hand,   the  topic  similarity made  by  comparing   the  topic  proportion of  web  article.  This topic proportion inferred from the Latent Dirichlet Allocation (LDA). The results show that in our dataset there are not many interesting   topic relations in one session.  This  result  can  be resolved,  by  utilizing  the  second  level  of  recommendation  by looking into the article  that  has the similar  topic.https://pubs.ascee.org/index.php/businta/article/view/36AprioriAssociation ruleLDARwcommendationTopic modelling
collection DOAJ
language English
format Article
sources DOAJ
author Guntur Budi Herwanto
Annisa Maulida Ningtyas
spellingShingle Guntur Budi Herwanto
Annisa Maulida Ningtyas
Recommendation system for web article based on association rules and topic modelling
Bulletin of Social Informatics Theory and Application
Apriori
Association rule
LDA
Rwcommendation
Topic modelling
author_facet Guntur Budi Herwanto
Annisa Maulida Ningtyas
author_sort Guntur Budi Herwanto
title Recommendation system for web article based on association rules and topic modelling
title_short Recommendation system for web article based on association rules and topic modelling
title_full Recommendation system for web article based on association rules and topic modelling
title_fullStr Recommendation system for web article based on association rules and topic modelling
title_full_unstemmed Recommendation system for web article based on association rules and topic modelling
title_sort recommendation system for web article based on association rules and topic modelling
publisher Association for Scientic Computing and Electronics, Engineering (ASCEE)
series Bulletin of Social Informatics Theory and Application
issn 2614-0047
publishDate 2017-03-01
description The World Wide Web is now the primary source for information discovery. A user visits websites that provide information and browse on the particular information in accordance   with their   topic interest.   Through  the  navigational process,  visitors  often  had  to  jump  over  the  menu  to  find  the right  content.  Recommendation system can help the visitors to find the right content immediately.  In this study, we propose a two-level recommendation system, based on association rule and topic similarity.  We generate association rule by applying Apriori algorithm.   The  dataset  for  association  rule  mining  is a  session of  topics  that  made  by  combining  the  result of  sessionization and  topic  modeling.  On  the  other   hand,   the  topic  similarity made  by  comparing   the  topic  proportion of  web  article.  This topic proportion inferred from the Latent Dirichlet Allocation (LDA). The results show that in our dataset there are not many interesting   topic relations in one session.  This  result  can  be resolved,  by  utilizing  the  second  level  of  recommendation  by looking into the article  that  has the similar  topic.
topic Apriori
Association rule
LDA
Rwcommendation
Topic modelling
url https://pubs.ascee.org/index.php/businta/article/view/36
work_keys_str_mv AT gunturbudiherwanto recommendationsystemforwebarticlebasedonassociationrulesandtopicmodelling
AT annisamaulidaningtyas recommendationsystemforwebarticlebasedonassociationrulesandtopicmodelling
_version_ 1725298047095668736