Genome-wide scan identifies loci associated with classical BSE occurrence.

Classical bovine spongiform encephalopathy (BSE) is an acquired prion disease that is invariably fatal in cattle and has been implicated as a significant human health risk. Sequence variations in the coding region of the prion gene (PRNP) have been associated with acquired transmissible spongiform e...

Full description

Bibliographic Details
Main Authors: Brenda M Murdoch, Gordon K Murdoch, Matthew Settles, Stephanie McKay, John L Williams, Stephen S Moore
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2011-01-01
Series:PLoS ONE
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/22073200/pdf/?tool=EBI
Description
Summary:Classical bovine spongiform encephalopathy (BSE) is an acquired prion disease that is invariably fatal in cattle and has been implicated as a significant human health risk. Sequence variations in the coding region of the prion gene (PRNP) have been associated with acquired transmissible spongiform encephalopathy (TSE) susceptibility in mammals; however, this is not the case in cattle. It has been hypothesized that genes, in addition to the prion gene, contribute to genetic susceptibility of acquired TSEs. Accordingly, genetic studies of classical BSE in cattle identified loci other than PRNP that are associated with disease incidence. The objective of this study was to utilize a genome-wide association study to test for genetic loci associated with classical BSE. The samples include 143 BSE affected (case) and 173 unaffected half sib (control) animals collected in the mid 1990s in Southern England. The data analysis identifies loci on two different chromosomes associated with BSE disease occurrence. Most notable is a single nucleotide polymorphism on chromosome 1 at 29.15 Mb that is associated with BSE disease (p = 3.09E-05). Additionally, a locus on chromosome 14, within a cluster of SNPs showed a trend toward significance (p = 5.24E-05). It is worth noting that in a human vCJD study markers on human chromosome 8, a region with shared synteny to the region identified on cattle chromosome 14, were associated with disease. Further, our candidate genes appear to have plausible biological relevance with the known etiology of TSE disease. One of the candidate genes is hypothetical gene LOC521010, similar to FK506 binding protein 2 located on chromosome 1 at 29.32 Mb. This gene encodes a protein that is a member of the immunophilin protein family and is involved in basic cellular processes including protein folding. The chromosomal regions identified in this study and candidate genes within these regions merit further investigation.
ISSN:1932-6203