Prediksi Penyakit Ginjal Kronis Menggunakan Hibrid Jaringan Saraf Tiruan Backpropagation dengan Particle Swarm Optimization

The number of Chronic Kidney Disease patient increased year by year while it doesn’t following by sufficient human resources and infrastructure needs the information of Chronic Kidney Disease patient prediction. Prediction of Chronic Kidney Disease patient is necessary to be done as an anticipation...

Full description

Bibliographic Details
Main Authors: Sheren Afryan Tyastama, Tri Ginanjar Laksana, Amalia Beladina Arifa
Format: Article
Language:English
Published: Pusat Penelitian dan Pengabdian Masyarakat (P3M), Politeknik Negeri Cilacap 2021-06-01
Series:Journal of Innovation Information Technology and Application
Subjects:
Online Access:https://ejournal.pnc.ac.id/index.php/jinita/article/view/588
id doaj-eb450e00b16743f98d5060bc105085fb
record_format Article
spelling doaj-eb450e00b16743f98d5060bc105085fb2021-09-08T03:40:56ZengPusat Penelitian dan Pengabdian Masyarakat (P3M), Politeknik Negeri CilacapJournal of Innovation Information Technology and Application2716-08582715-92482021-06-013191610.35970/jinita.v3i1.588217Prediksi Penyakit Ginjal Kronis Menggunakan Hibrid Jaringan Saraf Tiruan Backpropagation dengan Particle Swarm OptimizationSheren Afryan Tyastama0Tri Ginanjar Laksana1Amalia Beladina Arifa2Institut Teknologi Telkom PurwokertoInstitut Teknologi Telkom PurwokertoInstitut Teknologi Telkom PurwokertoThe number of Chronic Kidney Disease patient increased year by year while it doesn’t following by sufficient human resources and infrastructure needs the information of Chronic Kidney Disease patient prediction. Prediction of Chronic Kidney Disease patient is necessary to be done as an anticipation for preparing the better human resources and infrastructure that will effect to patient survival rate. In this study, backpropagation artificial neural network and particle swarm optimization combination used to predict the number of Chronic Kidney Disease patient. Artificial Neural Network has the ability in time series data prediction, such as the number of Chronic Kidney Disease year by year. But, backpropagation artificial neural network has a weakness in weight inisialization which taken unoptimally that could cause bad convergence speed. Particle swarm optimization will resolve the backpropagation artificial neural network weakness by weights optimization that will used in backpropagation artificial neural network. The Artificial Neural Network and Particle Swarm Optimization have several parameters, such as the number of hidden layer neuron, learning rate, and swarm. This research is using RSUD Banyumas Chronic Kidney Disease patient data in 2011 until 2020. Matlab R2019a used in this research as a software to predict chronic kidney disease patient data. The test results shows the prediction accuracy based on Mean Squared Error value is 0,0370 using 12-16-1 artificial neural network architecture, 0.005 learning rate, 1250 epochs and 50 swarmshttps://ejournal.pnc.ac.id/index.php/jinita/article/view/588artificial neural networkbackpropagationchronic kidney diseaseparticle swarm optimizatioprediction
collection DOAJ
language English
format Article
sources DOAJ
author Sheren Afryan Tyastama
Tri Ginanjar Laksana
Amalia Beladina Arifa
spellingShingle Sheren Afryan Tyastama
Tri Ginanjar Laksana
Amalia Beladina Arifa
Prediksi Penyakit Ginjal Kronis Menggunakan Hibrid Jaringan Saraf Tiruan Backpropagation dengan Particle Swarm Optimization
Journal of Innovation Information Technology and Application
artificial neural network
backpropagation
chronic kidney disease
particle swarm optimizatio
prediction
author_facet Sheren Afryan Tyastama
Tri Ginanjar Laksana
Amalia Beladina Arifa
author_sort Sheren Afryan Tyastama
title Prediksi Penyakit Ginjal Kronis Menggunakan Hibrid Jaringan Saraf Tiruan Backpropagation dengan Particle Swarm Optimization
title_short Prediksi Penyakit Ginjal Kronis Menggunakan Hibrid Jaringan Saraf Tiruan Backpropagation dengan Particle Swarm Optimization
title_full Prediksi Penyakit Ginjal Kronis Menggunakan Hibrid Jaringan Saraf Tiruan Backpropagation dengan Particle Swarm Optimization
title_fullStr Prediksi Penyakit Ginjal Kronis Menggunakan Hibrid Jaringan Saraf Tiruan Backpropagation dengan Particle Swarm Optimization
title_full_unstemmed Prediksi Penyakit Ginjal Kronis Menggunakan Hibrid Jaringan Saraf Tiruan Backpropagation dengan Particle Swarm Optimization
title_sort prediksi penyakit ginjal kronis menggunakan hibrid jaringan saraf tiruan backpropagation dengan particle swarm optimization
publisher Pusat Penelitian dan Pengabdian Masyarakat (P3M), Politeknik Negeri Cilacap
series Journal of Innovation Information Technology and Application
issn 2716-0858
2715-9248
publishDate 2021-06-01
description The number of Chronic Kidney Disease patient increased year by year while it doesn’t following by sufficient human resources and infrastructure needs the information of Chronic Kidney Disease patient prediction. Prediction of Chronic Kidney Disease patient is necessary to be done as an anticipation for preparing the better human resources and infrastructure that will effect to patient survival rate. In this study, backpropagation artificial neural network and particle swarm optimization combination used to predict the number of Chronic Kidney Disease patient. Artificial Neural Network has the ability in time series data prediction, such as the number of Chronic Kidney Disease year by year. But, backpropagation artificial neural network has a weakness in weight inisialization which taken unoptimally that could cause bad convergence speed. Particle swarm optimization will resolve the backpropagation artificial neural network weakness by weights optimization that will used in backpropagation artificial neural network. The Artificial Neural Network and Particle Swarm Optimization have several parameters, such as the number of hidden layer neuron, learning rate, and swarm. This research is using RSUD Banyumas Chronic Kidney Disease patient data in 2011 until 2020. Matlab R2019a used in this research as a software to predict chronic kidney disease patient data. The test results shows the prediction accuracy based on Mean Squared Error value is 0,0370 using 12-16-1 artificial neural network architecture, 0.005 learning rate, 1250 epochs and 50 swarms
topic artificial neural network
backpropagation
chronic kidney disease
particle swarm optimizatio
prediction
url https://ejournal.pnc.ac.id/index.php/jinita/article/view/588
work_keys_str_mv AT sherenafryantyastama prediksipenyakitginjalkronismenggunakanhibridjaringansaraftiruanbackpropagationdenganparticleswarmoptimization
AT triginanjarlaksana prediksipenyakitginjalkronismenggunakanhibridjaringansaraftiruanbackpropagationdenganparticleswarmoptimization
AT amaliabeladinaarifa prediksipenyakitginjalkronismenggunakanhibridjaringansaraftiruanbackpropagationdenganparticleswarmoptimization
_version_ 1717762969429868544