Prediksi Penyakit Ginjal Kronis Menggunakan Hibrid Jaringan Saraf Tiruan Backpropagation dengan Particle Swarm Optimization
The number of Chronic Kidney Disease patient increased year by year while it doesn’t following by sufficient human resources and infrastructure needs the information of Chronic Kidney Disease patient prediction. Prediction of Chronic Kidney Disease patient is necessary to be done as an anticipation...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Pusat Penelitian dan Pengabdian Masyarakat (P3M), Politeknik Negeri Cilacap
2021-06-01
|
Series: | Journal of Innovation Information Technology and Application |
Subjects: | |
Online Access: | https://ejournal.pnc.ac.id/index.php/jinita/article/view/588 |
id |
doaj-eb450e00b16743f98d5060bc105085fb |
---|---|
record_format |
Article |
spelling |
doaj-eb450e00b16743f98d5060bc105085fb2021-09-08T03:40:56ZengPusat Penelitian dan Pengabdian Masyarakat (P3M), Politeknik Negeri CilacapJournal of Innovation Information Technology and Application2716-08582715-92482021-06-013191610.35970/jinita.v3i1.588217Prediksi Penyakit Ginjal Kronis Menggunakan Hibrid Jaringan Saraf Tiruan Backpropagation dengan Particle Swarm OptimizationSheren Afryan Tyastama0Tri Ginanjar Laksana1Amalia Beladina Arifa2Institut Teknologi Telkom PurwokertoInstitut Teknologi Telkom PurwokertoInstitut Teknologi Telkom PurwokertoThe number of Chronic Kidney Disease patient increased year by year while it doesn’t following by sufficient human resources and infrastructure needs the information of Chronic Kidney Disease patient prediction. Prediction of Chronic Kidney Disease patient is necessary to be done as an anticipation for preparing the better human resources and infrastructure that will effect to patient survival rate. In this study, backpropagation artificial neural network and particle swarm optimization combination used to predict the number of Chronic Kidney Disease patient. Artificial Neural Network has the ability in time series data prediction, such as the number of Chronic Kidney Disease year by year. But, backpropagation artificial neural network has a weakness in weight inisialization which taken unoptimally that could cause bad convergence speed. Particle swarm optimization will resolve the backpropagation artificial neural network weakness by weights optimization that will used in backpropagation artificial neural network. The Artificial Neural Network and Particle Swarm Optimization have several parameters, such as the number of hidden layer neuron, learning rate, and swarm. This research is using RSUD Banyumas Chronic Kidney Disease patient data in 2011 until 2020. Matlab R2019a used in this research as a software to predict chronic kidney disease patient data. The test results shows the prediction accuracy based on Mean Squared Error value is 0,0370 using 12-16-1 artificial neural network architecture, 0.005 learning rate, 1250 epochs and 50 swarmshttps://ejournal.pnc.ac.id/index.php/jinita/article/view/588artificial neural networkbackpropagationchronic kidney diseaseparticle swarm optimizatioprediction |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sheren Afryan Tyastama Tri Ginanjar Laksana Amalia Beladina Arifa |
spellingShingle |
Sheren Afryan Tyastama Tri Ginanjar Laksana Amalia Beladina Arifa Prediksi Penyakit Ginjal Kronis Menggunakan Hibrid Jaringan Saraf Tiruan Backpropagation dengan Particle Swarm Optimization Journal of Innovation Information Technology and Application artificial neural network backpropagation chronic kidney disease particle swarm optimizatio prediction |
author_facet |
Sheren Afryan Tyastama Tri Ginanjar Laksana Amalia Beladina Arifa |
author_sort |
Sheren Afryan Tyastama |
title |
Prediksi Penyakit Ginjal Kronis Menggunakan Hibrid Jaringan Saraf Tiruan Backpropagation dengan Particle Swarm Optimization |
title_short |
Prediksi Penyakit Ginjal Kronis Menggunakan Hibrid Jaringan Saraf Tiruan Backpropagation dengan Particle Swarm Optimization |
title_full |
Prediksi Penyakit Ginjal Kronis Menggunakan Hibrid Jaringan Saraf Tiruan Backpropagation dengan Particle Swarm Optimization |
title_fullStr |
Prediksi Penyakit Ginjal Kronis Menggunakan Hibrid Jaringan Saraf Tiruan Backpropagation dengan Particle Swarm Optimization |
title_full_unstemmed |
Prediksi Penyakit Ginjal Kronis Menggunakan Hibrid Jaringan Saraf Tiruan Backpropagation dengan Particle Swarm Optimization |
title_sort |
prediksi penyakit ginjal kronis menggunakan hibrid jaringan saraf tiruan backpropagation dengan particle swarm optimization |
publisher |
Pusat Penelitian dan Pengabdian Masyarakat (P3M), Politeknik Negeri Cilacap |
series |
Journal of Innovation Information Technology and Application |
issn |
2716-0858 2715-9248 |
publishDate |
2021-06-01 |
description |
The number of Chronic Kidney Disease patient increased year by year while it doesn’t following by sufficient human resources and infrastructure needs the information of Chronic Kidney Disease patient prediction. Prediction of Chronic Kidney Disease patient is necessary to be done as an anticipation for preparing the better human resources and infrastructure that will effect to patient survival rate. In this study, backpropagation artificial neural network and particle swarm optimization combination used to predict the number of Chronic Kidney Disease patient. Artificial Neural Network has the ability in time series data prediction, such as the number of Chronic Kidney Disease year by year. But, backpropagation artificial neural network has a weakness in weight inisialization which taken unoptimally that could cause bad convergence speed. Particle swarm optimization will resolve the backpropagation artificial neural network weakness by weights optimization that will used in backpropagation artificial neural network. The Artificial Neural Network and Particle Swarm Optimization have several parameters, such as the number of hidden layer neuron, learning rate, and swarm. This research is using RSUD Banyumas Chronic Kidney Disease patient data in 2011 until 2020. Matlab R2019a used in this research as a software to predict chronic kidney disease patient data. The test results shows the prediction accuracy based on Mean Squared Error value is 0,0370 using 12-16-1 artificial neural network architecture, 0.005 learning rate, 1250 epochs and 50 swarms |
topic |
artificial neural network backpropagation chronic kidney disease particle swarm optimizatio prediction |
url |
https://ejournal.pnc.ac.id/index.php/jinita/article/view/588 |
work_keys_str_mv |
AT sherenafryantyastama prediksipenyakitginjalkronismenggunakanhibridjaringansaraftiruanbackpropagationdenganparticleswarmoptimization AT triginanjarlaksana prediksipenyakitginjalkronismenggunakanhibridjaringansaraftiruanbackpropagationdenganparticleswarmoptimization AT amaliabeladinaarifa prediksipenyakitginjalkronismenggunakanhibridjaringansaraftiruanbackpropagationdenganparticleswarmoptimization |
_version_ |
1717762969429868544 |