Next-Generation Sequencing: The Translational Medicine Approach from “Bench to Bedside to Population”
Humans have predicted the relationship between heredity and diseases for a long time. Only in the beginning of the last century, scientists begin to discover the connotations between different genes and disease phenotypes. Recent trends in next-generation sequencing (NGS) technologies have brought a...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2016-06-01
|
Series: | Medicines |
Subjects: | |
Online Access: | http://www.mdpi.com/2305-6320/3/2/14 |
id |
doaj-eb7e767a3a934f99aab1355d85631722 |
---|---|
record_format |
Article |
spelling |
doaj-eb7e767a3a934f99aab1355d856317222020-11-24T20:47:32ZengMDPI AGMedicines2305-63202016-06-01321410.3390/medicines3020014medicines3020014Next-Generation Sequencing: The Translational Medicine Approach from “Bench to Bedside to Population”Mohammad Muzafar Beigh0Senior Research Fellow, National Research Centre for Plant Biotechnology, Indian Agricultural Research Institute, Pusa Road, New Delhi 110012, IndiaHumans have predicted the relationship between heredity and diseases for a long time. Only in the beginning of the last century, scientists begin to discover the connotations between different genes and disease phenotypes. Recent trends in next-generation sequencing (NGS) technologies have brought a great momentum in biomedical research that in turn has remarkably augmented our basic understanding of human biology and its associated diseases. State-of-the-art next generation biotechnologies have started making huge strides in our current understanding of mechanisms of various chronic illnesses like cancers, metabolic disorders, neurodegenerative anomalies, etc. We are experiencing a renaissance in biomedical research primarily driven by next generation biotechnologies like genomics, transcriptomics, proteomics, metabolomics, lipidomics etc. Although genomic discoveries are at the forefront of next generation omics technologies, however, their implementation into clinical arena had been painstakingly slow mainly because of high reaction costs and unavailability of requisite computational tools for large-scale data analysis. However rapid innovations and steadily lowering cost of sequence-based chemistries along with the development of advanced bioinformatics tools have lately prompted launching and implementation of large-scale massively parallel genome sequencing programs in different fields ranging from medical genetics, infectious biology, agriculture sciences etc. Recent advances in large-scale omics-technologies is bringing healthcare research beyond the traditional “bench to bedside” approach to more of a continuum that will include improvements, in public healthcare and will be primarily based on predictive, preventive, personalized, and participatory medicine approach (P4). Recent large-scale research projects in genetic and infectious disease biology have indicated that massively parallel whole-genome/whole-exome sequencing, transcriptome analysis, and other functional genomic tools can reveal large number of unique functional elements and/or markers that otherwise would be undetected by traditional sequencing methodologies. Therefore, latest trends in the biomedical research is giving birth to the new branch in medicine commonly referred to as personalized and/or precision medicine. Developments in the post-genomic era are believed to completely restructure the present clinical pattern of disease prevention and treatment as well as methods of diagnosis and prognosis. The next important step in the direction of the precision/personalized medicine approach should be its early adoption in clinics for future medical interventions. Consequently, in coming year’s next generation biotechnologies will reorient medical practice more towards disease prediction and prevention approaches rather than curing them at later stages of their development and progression, even at wider population level(s) for general public healthcare system.http://www.mdpi.com/2305-6320/3/2/14genomicsnext generation sequencingWhole-genome sequencingWhole-exome sequencingprecision medicineepigeneticstranscriptomicsbioinformatics |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Mohammad Muzafar Beigh |
spellingShingle |
Mohammad Muzafar Beigh Next-Generation Sequencing: The Translational Medicine Approach from “Bench to Bedside to Population” Medicines genomics next generation sequencing Whole-genome sequencing Whole-exome sequencing precision medicine epigenetics transcriptomics bioinformatics |
author_facet |
Mohammad Muzafar Beigh |
author_sort |
Mohammad Muzafar Beigh |
title |
Next-Generation Sequencing: The Translational Medicine Approach from “Bench to Bedside to Population” |
title_short |
Next-Generation Sequencing: The Translational Medicine Approach from “Bench to Bedside to Population” |
title_full |
Next-Generation Sequencing: The Translational Medicine Approach from “Bench to Bedside to Population” |
title_fullStr |
Next-Generation Sequencing: The Translational Medicine Approach from “Bench to Bedside to Population” |
title_full_unstemmed |
Next-Generation Sequencing: The Translational Medicine Approach from “Bench to Bedside to Population” |
title_sort |
next-generation sequencing: the translational medicine approach from “bench to bedside to population” |
publisher |
MDPI AG |
series |
Medicines |
issn |
2305-6320 |
publishDate |
2016-06-01 |
description |
Humans have predicted the relationship between heredity and diseases for a long time. Only in the beginning of the last century, scientists begin to discover the connotations between different genes and disease phenotypes. Recent trends in next-generation sequencing (NGS) technologies have brought a great momentum in biomedical research that in turn has remarkably augmented our basic understanding of human biology and its associated diseases. State-of-the-art next generation biotechnologies have started making huge strides in our current understanding of mechanisms of various chronic illnesses like cancers, metabolic disorders, neurodegenerative anomalies, etc. We are experiencing a renaissance in biomedical research primarily driven by next generation biotechnologies like genomics, transcriptomics, proteomics, metabolomics, lipidomics etc. Although genomic discoveries are at the forefront of next generation omics technologies, however, their implementation into clinical arena had been painstakingly slow mainly because of high reaction costs and unavailability of requisite computational tools for large-scale data analysis. However rapid innovations and steadily lowering cost of sequence-based chemistries along with the development of advanced bioinformatics tools have lately prompted launching and implementation of large-scale massively parallel genome sequencing programs in different fields ranging from medical genetics, infectious biology, agriculture sciences etc. Recent advances in large-scale omics-technologies is bringing healthcare research beyond the traditional “bench to bedside” approach to more of a continuum that will include improvements, in public healthcare and will be primarily based on predictive, preventive, personalized, and participatory medicine approach (P4). Recent large-scale research projects in genetic and infectious disease biology have indicated that massively parallel whole-genome/whole-exome sequencing, transcriptome analysis, and other functional genomic tools can reveal large number of unique functional elements and/or markers that otherwise would be undetected by traditional sequencing methodologies. Therefore, latest trends in the biomedical research is giving birth to the new branch in medicine commonly referred to as personalized and/or precision medicine. Developments in the post-genomic era are believed to completely restructure the present clinical pattern of disease prevention and treatment as well as methods of diagnosis and prognosis. The next important step in the direction of the precision/personalized medicine approach should be its early adoption in clinics for future medical interventions. Consequently, in coming year’s next generation biotechnologies will reorient medical practice more towards disease prediction and prevention approaches rather than curing them at later stages of their development and progression, even at wider population level(s) for general public healthcare system. |
topic |
genomics next generation sequencing Whole-genome sequencing Whole-exome sequencing precision medicine epigenetics transcriptomics bioinformatics |
url |
http://www.mdpi.com/2305-6320/3/2/14 |
work_keys_str_mv |
AT mohammadmuzafarbeigh nextgenerationsequencingthetranslationalmedicineapproachfrombenchtobedsidetopopulation |
_version_ |
1716809698234073088 |