A computational approach for solving time fractional differential equation via spline functions

A computational approach based on finite difference scheme and a redefined extended B-spline functions is presented to study the approximate solution of time fractional advection diffusion equation. The Caputo time-fractional derivative and redefined extended B-spline functions have been used for th...

Full description

Bibliographic Details
Main Authors: Nauman Khalid, Muhammad Abbas, Muhammad Kashif Iqbal, Jagdev Singh, Ahmad Izani Md. Ismail
Format: Article
Language:English
Published: Elsevier 2020-10-01
Series:Alexandria Engineering Journal
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S111001682030257X
Description
Summary:A computational approach based on finite difference scheme and a redefined extended B-spline functions is presented to study the approximate solution of time fractional advection diffusion equation. The Caputo time-fractional derivative and redefined extended B-spline functions have been used for the time and spatial discretization, respectively. The numerical scheme is shown to be O(h2+Δt2-α) accurate and unconditionally stable. The proposed method is tested through some numerical experiments involving homogeneous/non-homogeneous boundary conditions which concluded that it is more accurate than existing methods. The simulation results show superior agreement with the exact solution as compared to existing methods.
ISSN:1110-0168